文章目录
Title
-
液压阿特拉斯臂的软体机器人技术:带有碰撞检测和扰动补偿的关节阻抗控制(机翻)
-
作者:Jonathan Vorndamme, Moritz Schappler, Alexander Todtheide and Sami Haddadin
-
论文传送门:点我
-
配套仿真资料:点我
Abstract
软体机器人技术,如阻抗控制和反射性碰撞处理,已被证明是机器人在部分未知和潜在非结构化环境中行动的宝贵工具。这些方案主要针对经典的电动机械驱动、扭矩控制机器人开发。在刚性液压驱动的机器人上扩展和应用这些算法,由于摩擦对基于压力感应的关节扭矩估计的强烈影响,带来了问题。为了提高这类系统的性能,我们对类人机器人Atlas应用了最先进的故障检测和估计方法,以及基于观测器的扰动补偿控制。通过这种方法,尽管面临显著的建模误差,仍然可以实现更高的跟踪精度。通过在[1]中的广义动量基础扰动观测算法中包含额外的力/扭矩传感器,也可以确保末端执行器的行为符合要求。
I. INTRODUCTION AND STATE OF THE ART
顺应性操作和对碰撞的适当反射反应一直是过去几十年的活跃研究领域,为更安全和更自主的机器人应用打开了大门。不仅要确保工业机器人同事的人类友好行为,它们通常是串联链操纵器,而且在未来的健康护理、救援甚至个人机器人应用中,移动性至关重要。同时,顺应性控制和反射性接触处理被认为是波士顿动力Atlas液压机器人等系统损伤保护的基本特征。本质上,通过固有的顺应性结构和/或通过高保真关节扭矩反馈的主动顺应性控制来实现柔软性。实现顺应性最突出的控制概念之一是阻抗控制。它在[9]中被引入,并扩展到柔性关节机器人,例如在[10]、[11]中。然而,到目前为止,这些方案主要应用于电动机械驱动的机器人。对于液压人形机器人,基本的顺应性控制方案已经在SARCOS人形机器人上实施,重点关注平衡和接触雅可比矩阵[12],通过二次规划处理约束[13]或使用LQR反馈增益优化[14]。在Atlas机器人上实施了基于位置的阻抗控制(位置阻抗控制)的概念[15]。激活反射反应作为对潜在不受欢迎的环境接触的响应是安全和敏感机器人交互的另一个主要支柱。这需要能够基于准确的动力学模型以及本体感知位置和扭矩测量来区分内部和外部扭矩。扰动观测器是机器人技术中处理建模不准确性[16]或识别意外事件(如碰撞)[18]的常见技术。[18]使用基于动量的扰动观测器进行碰撞检测、隔离和估计,包括使用2自由度(DoF)模拟的验证。这些结果扩展到了柔性操纵器的情况,并使用DLR轻型机器人臂III[1]进行了实验验证,使用了总链能量和广义动量的概念。[19]提出了误差动力学不同项的分析和基于速度的变量碰撞阈值的方法。[20]使用基于观测扰动扭矩的外部末端执行器 wrench 估计,以增强人形机器人TORO的模型预测平衡控制器。[21]通过应用最先进的机器学习技术来学习不同碰撞类型的碰撞扭矩轮廓,包括基于碰撞频率、幅度或其他物理动机方面的特征,来解决随后的碰撞分类问题。碰撞处理的总结可以在[2]中找到。这些工作的重点是配备链侧关节扭矩感应的电动机械驱动机器人。对6自由度液压机器人臂Maestro进行了低通滤波模型误差的碰撞检测评估[22],重点关注液压摩擦效应。[23]的作者将包含带通滤波器的扰动观测器应用于3自由度液压机器人臂和关节扭矩传感器,利用特定识别的碰撞频率进行碰撞检测,与电动机械对应物相比,常用的液压执行器不需要链侧扭矩测量。事实上,可以通过腔室压力估计执行器力。然而,链侧摩擦,例如由腔室密封引起的,可能相当高。这反过来使得直接实现高保真关节扭矩控制,以及任何其他软体机器人控制概念变得困难。在目前的研究中,我们通过两步方法来解决这个问题,首先识别摩擦模型,包括库仑和粘滞摩擦,然后在第二步中使用第一步的结果来减少动态模型识别的参数数量。为了在使用阻抗控制时补偿建模误差,使用了广义基于动量的扰动观测器[24]。由于外部力不能系统地区分于扰动扭矩,因此它们也被观测器补偿,这是这种方法的一个缺点。为了解决末端执行器接触的这个问题,我们使用手腕力/扭矩传感器来计算外部关节扭矩,并将它们从扰动扭矩计算中排除。最后,识别的摩擦模型是控制方案的一部分,以进一步减少观测到的扰动。
本文的贡献包括
- 1)通过考虑摩擦和手腕力/扭矩测量等影响来扩展基于动量的碰撞处理,
- 2)对7自由度Atlas机器人臂的液压部分进行碰撞检测和反应方案的实验验证,
- 3)基于手腕力/扭矩测量的扰动观测器补偿概念的模拟结果,提高了阻抗控制器的精度,并同时保持末端执行器的顺应性,以及
- 4)将两步摩擦和扩展刚体动力学识别方法应用于具有液压和电动机械执行器的串联链机器人。
本文的结构如下。第二节从[24]中适应我们的识别和控制概念,并与以前的方法进行比较。第三节展示了Atlas机器人的碰撞检测和反应的实验结果。此外,还解释了使用[16]中的扰动补偿恢复顺应性的概念。第四节总结了本文。
II. MODELING AND I DENTIFICATION
本节简要回顾了系统建模和增强的阻抗控制器方法(II-A),对基于动量的扰动观测器进行修改以包括手腕力/扭矩测量(II-B),补偿建模误差和碰撞处理(II-C),以及一个迭代估计摩擦特性和刚体参数的识别方案(II-D)。
A. System Model and Joint Impedance Controller
本工作重点研究了波士顿动力公司人形机器人Atlas的7R型串联机械臂,如图9所示。该机械臂采用了混合驱动概念,其中前四个关节(shz, shx, ely, elx)是液压驱动的,而手腕关节(wry, wrx, wry2)由电动机械齿轮驱动。我们假设标准的固定基座刚性关节臂模型为
M
(
q
)
q
¨
+
C
(
q
,
q
˙
)
q
˙
+
g
(
q
)
=
τ
m
−
τ
f
+
τ
ext
,
(
1
)
M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = \tau_m - \tau_f + \tau_{\text{ext}} , (1)
M(q)q¨+C(q,q˙)q˙+g(q)=τm−τf+τext,(1)
其中
q
∈
R
n
j
q \in \mathbb{R}^{n_j}
q∈Rnj是广义关节位置向量(
n
j
n_j
nj为关节数量),
M
(
q
)
M(q)
M(q)是正定对称惯性矩阵,
C
(
q
,
q
˙
)
C(q, \dot{q})
C(q,q˙)是离心力和科里奥利矩阵,
g
(
q
)
g(q)
g(q)是重力扭矩向量,
τ
m
\tau_m
τm是执行器扭矩,
τ
f
\tau_f
τf是摩擦扭矩,
τ
ext
\tau_{\text{ext}}
τext是外部扭矩。摩擦扭矩
τ
f
\tau_f
τf由电机侧摩擦
τ
f
,
θ
\tau_{f,\theta}
τf,θ和链侧摩擦
τ
f
,
q
\tau_{f,q}
τf,q组成。液压和电动机械执行器都被视为理想的扭矩源,产生电机扭矩
τ
m
\tau_m
τm,从而将执行器动力学与刚体模型分离。对于系统的软体机器人控制,我们选择关节阻抗控制扭矩
τ
d
\tau_d
τd为
τ d = K ( q d − q ) + D ( q ˙ d − q ˙ ) + g ^ ( q ) + C ^ ( q , q ˙ ) q ˙ + M ^ ( q d ) q ¨ d + κ f τ ^ f ( q ˙ ) + κ ϵ τ ^ ϵ ( q , q ˙ , τ m ) , ( 2 ) \tau_d = K(q_d - q) + D(\dot{q}_d - \dot{q}) + \hat{g}(q) + \hat{C}(q, \dot{q})\dot{q}\\ + \hat{M}(q_d)\ddot{q}_d + \kappa_f \hat{\tau}_f(\dot{q})+ \kappa_{\epsilon} \hat{\tau}_{\epsilon}(q, \dot{q}, \tau_m), (2) τd=K(qd−q)+D(q˙d−q˙)+g^(q)+C^(q,q˙)q˙+M^(qd)q¨d+κfτ^f(q˙)+κϵτ^ϵ(q,q˙,τm),(2)
其中
q
d
,
q
˙
d
,
q
¨
d
q_d, \dot{q}_d, \ddot{q}_d
qd,q˙d,q¨d分别是期望的位置、速度和加速度。矩阵
K
=
diag
{
k
i
}
K = \text{diag}\{k_i\}
K=diag{ki}和
D
ξ
=
diag
{
d
ξ
i
}
D\xi = \text{diag}\{d\xi_i\}
Dξ=diag{dξi}表示对角正定刚度和阻尼矩阵,
D
D
D是由此产生的正定阻尼矩阵。
g
^
\hat{g}
g^和
C
^
\hat{C}
C^是重力和离心力/科里奥利的估计值。惯性前馈项利用期望位置
q
d
q_d
qd的估计惯性矩阵
M
^
\hat{M}
M^。补偿项
τ
^
f
(
q
˙
)
\hat{\tau}_f(\dot{q})
τ^f(q˙)(粘滞和库仑摩擦)和
τ
^
ϵ
(
q
,
q
˙
,
τ
m
)
\hat{\tau}_{\epsilon}(q, \dot{q}, \tau_m)
τ^ϵ(q,q˙,τm)(estimated disturbance from Sec. II-B)通过标量
κ
f
∈
{
0
,
1
}
\kappa_f \in \{0, 1\}
κf∈{0,1}和
κ
ϵ
∈
{
0
,
1
}
\kappa_{\epsilon} \in \{0, 1\}
κϵ∈{0,1}激活。将(1)和(2)结合得到闭环动力学
M
(
q
)
q
¨
−
M
^
(
q
d
)
q
¨
d
+
D
(
q
˙
−
q
˙
d
)
+
K
(
q
−
q
d
)
=
τ
ext
+
δ
−
κ
ϵ
τ
^
ϵ
,
M(q)\ddot{q} - \hat{M}(q_d)\ddot{q}_d + D(\dot{q} - \dot{q}_d) + K(q - q_d) = \tau_{\text{ext}} + \delta - \kappa_{\epsilon} \hat{\tau}_{\epsilon},
M(q)q¨−M^(qd)q¨d+D(q˙−q˙d)+K(q−qd)=τext+δ−κϵτ^ϵ,
其中
δ
\delta
δ表示集中的动力学和摩擦建模误差以及由传感器漂移、偏移和时间延迟引起的误差。我们假设这些效应是加性的。
B. Disturbance Observer
在介绍我们的观测器设计之前,让我们简要总结典型液压机器人碰撞检测的基本问题。图1强调了对于刚性关节模型而言与柔性关节情况相比,摩擦扭矩的相关性。后者代表了例如具有弹性关节和扭矩传感的电动机械驱动机器人。在前一种情况下,总摩擦
τ
f
\tau_f
τf和外部扭矩
τ
ext
\tau_{\text{ext}}
τext作用在一个单独的物体上,代表了电机和链的惯性并且累加起来成为总的扰动扭矩。因此,除非在某些建模假设下,它们不能通过标准的本体感知传感和相应的观测器技术来分离。在后一种情况下,电机侧和链侧动力学通过关节刚度
K
J
K_J
KJ耦合。这通常起源于相当弹性的齿轮,如与关节扭矩传感器结合的谐波传动(相当高的固有刚度
K
J
K_J
KJ),或者像系列弹性驱动(SEA [7])情况中故意放置的弹簧元素(相当低的固有刚度
K
J
K_J
KJ)。由于链侧摩擦
τ
f
,
q
\tau_{f,q}
τf,q通常很低(它主要是由低摩擦链侧轴承引起的),可以忽略不计,链侧观测器基本上估计了真实的外部关节扭矩。因此,可以设置两种观测器方案,一种用于估计电机侧的
τ
f
,
θ
\tau_{f,\theta}
τf,θ,另一种用于估计链侧的
τ
ext
\tau_{\text{ext}}
τext。请注意,显然也可以为液压情况设置弹性关节模型。然而,如果在一个额外的关节扭矩传感器插入以解耦链摩擦之后,这将只有类似的涵义。为了能够区分内部和外部效应,我们将[26]、[27]、[2]中的基于动量的扰动观测器扩展,包括测量末端执行器上的外部扭矩
F
ext
,
E
E
=
[
f
ext
,
E
E
m
ext
,
E
E
]
T
F_{\text{ext},EE} = \begin{bmatrix} f_{\text{ext},EE} \\ m_{\text{ext},EE} \end{bmatrix}^T
Fext,EE=[fext,EEmext,EE]T,即“传感器之后”[20]。扩展后的末端执行器接触残差定义为
其中
K
o
=
diag
{
k
o
,
i
}
>
0
K_o = \text{diag}\{k_{o,i}\} > 0
Ko=diag{ko,i}>0是观测器增益矩阵,并且
γ
(
q
,
q
˙
)
:
=
g
^
(
q
)
+
C
^
(
q
,
q
˙
)
q
˙
−
M
^
˙
(
q
)
q
˙
=
g
^
(
q
)
−
C
^
T
(
q
,
q
˙
)
q
˙
.
\gamma(q, \dot{q}) := \hat{g}(q) + \hat{C}(q, \dot{q}) \dot{q} - \dot{\hat{M}}(q) \dot{q} \\= \hat{g}(q) - \hat{C}^T(q, \dot{q}) \dot{q}.
γ(q,q˙):=g^(q)+C^(q,q˙)q˙−M^˙(q)q˙=g^(q)−C^T(q,q˙)q˙.
等式(5)直接来自于
M
^
˙
(
q
)
−
2
C
^
(
q
,
q
˙
)
\dot{\hat{M}}(q) - 2\hat{C}(q, \dot{q})
M^˙(q)−2C^(q,q˙)的斜对称性[1]。向量
α
(
q
,
q
˙
)
\alpha(q, \dot{q})
α(q,q˙)定义为
α
(
q
,
q
˙
)
:
=
κ
f
τ
^
f
(
q
˙
)
−
κ
ext
τ
ext
,
E
E
=
κ
f
τ
^
f
(
q
˙
)
−
κ
ext
J
T
(
q
)
F
ext
,
E
E
.
\alpha(q, \dot{q}) := \kappa_f \hat{\tau}_f(\dot{q}) - \kappa_{\text{ext}}\tau_{\text{ext},EE}\\= \kappa_f \hat{\tau}_f(\dot{q}) - \kappa_{\text{ext}}J^T(q)F_{\text{ext},EE}.
α(q,q˙):=κfτ^f(q˙)−κextτext,EE=κfτ^f(q˙)−κextJT(q)Fext,EE.
接触扭矩
F
ext
,
E
E
F_{\text{ext},EE}
Fext,EE通常使用机器人手腕中的负载补偿力/扭矩传感器进行测量。通过末端执行器雅可比
J
(
q
)
J(q)
J(q)得到外部关节扭矩
τ
ext
,
E
E
\tau_{\text{ext},EE}
τext,EE。其反馈通过
κ
ext
∈
{
0
,
1
}
\kappa_{\text{ext}} \in \{0, 1\}
κext∈{0,1}激活。请注意,
F
ext
,
E
E
F_{\text{ext},EE}
Fext,EE中在
J
T
(
q
)
J^T(q)
JT(q)的核空间中的分量被机器人结构吸收,并且不会反映在
τ
ext
,
E
E
\tau_{\text{ext},EE}
τext,EE中。为了直接从手腕传感器测量的外部扭矩
τ
ext
,
E
E
\tau_{\text{ext},EE}
τext,EE中区分出由于末端执行器上的外部扭矩而在关节上产生的扭矩和由于结构上的外部扭矩
τ
ext
,
links
\tau_{\text{ext},\text{links}}
τext,links而产生的关节扭矩,这些传感器无法测量,我们定义总外部扭矩向量
τ
ext
\tau_{\text{ext}}
τext为
τ
ext
:
=
τ
ext
,
E
E
+
τ
ext
,
links
.
\tau_{\text{ext}} := \tau_{\text{ext},EE} + \tau_{\text{ext},\text{links}}.
τext:=τext,EE+τext,links.
对于刚性关节模型,真实的扰动关节扭矩
τ
ϵ
\tau_{\epsilon}
τϵ由(7)中的关节扭矩加上(3)中的误差项
δ
\delta
δ组成。如[2]中推导的那样,对于这种扩展形式,观测到的扰动扭矩
τ
^
ϵ
\hat{\tau}_{\epsilon}
τ^ϵ也以一阶动力学收敛(在频域中呈现)
其中 1 / k o , i 1/k_{o,i} 1/ko,i是时间常数。图2描述了整体观测器结构的概述。在下一节中,我们将概述如何使用这个扩展的扰动观测器同时补偿建模误差和检测碰撞。
C. Compensation of Model Errors and Collision Detection
假设
τ
ext
\tau_{\text{ext}}
τext具有比观测器慢的动态(观测器增益
K
o
K_o
Ko足够大)。可以近似地认为扰动扭矩为
τ
^
ϵ
≈
(
τ
ext
,
E
E
(
1
−
κ
ext
)
+
τ
ext
,
links
+
δ
)
\hat{\tau}_{\epsilon} \approx (\tau_{\text{ext},EE}(1 - \kappa_{\text{ext}}) + \tau_{\text{ext},\text{links}} + \delta)
τ^ϵ≈(τext,EE(1−κext)+τext,links+δ)。因此,从方程(3)中获得
M
(
q
)
q
¨
−
M
^
(
q
d
)
q
¨
d
+
D
(
q
˙
−
q
˙
d
)
+
K
(
q
−
q
d
)
=
τ
ext
+
δ
−
κ
ϵ
(
τ
ext
,
E
E
(
1
−
κ
ext
)
+
τ
ext
,
links
+
δ
)
.
M(q)\ddot{q} - \hat{M}(q_d)\ddot{q}_d + D(\dot{q} - \dot{q}_d) + K(q - q_d) \\= \tau_{\text{ext}} + \delta - \kappa_{\epsilon} (\tau_{\text{ext},EE}(1 - \kappa_{\text{ext}}) + \tau_{\text{ext},\text{links}} + \delta).
M(q)q¨−M^(qd)q¨d+D(q˙−q˙d)+K(q−qd)=τext+δ−κϵ(τext,EE(1−κext)+τext,links+δ).
因此,通过在(2)中使用
κ
ϵ
=
1
\kappa_{\epsilon} = 1
κϵ=1和在(6)中使用
κ
ext
=
0
\kappa_{\text{ext}} = 0
κext=0的扰动补偿,可以显著提高轨迹跟踪性能,因为这将消除建模不准确性
δ
\delta
δ。显然的不利之处是,由于方程(9)变为
M
(
q
)
q
¨
−
M
^
(
q
d
)
q
¨
d
+
D
(
q
˙
−
q
˙
d
)
+
K
(
q
−
q
d
)
=
0
,
M(q)\ddot{q} - \hat{M}(q_d)\ddot{q}_d + D(\dot{q} - \dot{q}_d) + K(q - q_d) = 0,
M(q)q¨−M^(qd)q¨d+D(q˙−q˙d)+K(q−qd)=0,
系统不再对外部力做出反应,这种情况下会失去对外部扭矩的顺应性。通过利用手腕力/扭矩传感,可以避免这种不期望的刚度增加。在(2)中设置
κ
ϵ
=
1
\kappa_{\epsilon} = 1
κϵ=1和在(6)中设置
κ
ext
=
1
\kappa_{\text{ext}} = 1
κext=1,闭环行为(3)变为
M
(
q
)
q
¨
−
M
^
(
q
d
)
q
¨
d
+
D
(
q
˙
−
q
˙
d
)
+
K
(
q
−
q
d
)
=
τ
ext
,
E
E
.
M(q)\ddot{q} - \hat{M}(q_d)\ddot{q}_d + D(\dot{q} - \dot{q}_d) + K(q - q_d) = \tau_{\text{ext},EE}.
M(q)q¨−M^(qd)q¨d+D(q˙−q˙d)+K(q−qd)=τext,EE.
这种方案与[16]中提出的方案类似,从现在开始将被称为具有外部力顺应性(EFC)的扰动补偿。图3中的表格展示了
κ
ϵ
\kappa_{\epsilon}
κϵ和
κ
ext
\kappa_{\text{ext}}
κext不同设置的定性比较。
总之,可以
- 1)使用惯性补偿的力/扭矩传感器检测末端执行器接触,
- 2)使用扩展的观测器在容忍带之外检测整个机器人结构上的接触,
- 3)在保持对机器人结构接触的刚性行为的同时,实现末端执行器的顺应性。
通过上述观测器,我们实现了一个简单的基于恒定扰动关节扭矩阈值
ζ
\zeta
ζ的碰撞检测方案。
CollDet
=
{
1
,
if
τ
^
ϵ
>
ζ
(component wise)
0
,
otherwise
\text{CollDet} = \begin{cases} 1, & \text{if } \hat{\tau}_{\epsilon} > \zeta \text{ (component wise)} \\ 0, & \text{otherwise} \end{cases}
CollDet={1,0,if τ^ϵ>ζ (component wise)otherwise
为了使(12)正常工作,必须解决观测器的鲁棒性和收敛速度之间的权衡。(8)中的一阶观测器动态具有时间常数
1
/
k
o
,
i
1/k_{o,i}
1/ko,i,只要
K
o
K_o
Ko不是很大,就能使碰撞检测对传感器噪声和峰值具有鲁棒性。然而,较大的
K
o
K_o
Ko会导致
τ
^
ϵ
\hat{\tau}_{\epsilon}
τ^ϵ更快地收敛到
τ
ext
\tau_{\text{ext}}
τext。对于碰撞反应,我们切换到重力补偿模式[2]:
τ
d
=
{
g
^
(
q
)
,
if CollDet = 1
τ
d
from (2)
,
otherwise
\tau_d = \begin{cases} \hat{g}(q), & \text{if CollDet = 1} \\ \tau_d \text{ from (2)}, & \text{otherwise} \end{cases}
τd={g^(q),τd from (2),if CollDet = 1otherwise
另一种可能性是实施图3中的方案。它以上下文敏感的方式使用表格中的三种控制模式。例如,为了抓取物体,需要末端执行器的顺应性和高精度位置,因此使用
κ
ϵ
=
1
\kappa_{\epsilon} = 1
κϵ=1和
κ
ext
=
1
\kappa_{\text{ext}} = 1
κext=1。对于移动未知重量的物体,不需要末端执行器的顺应性,因此使用
κ
ext
=
1
\kappa_{\text{ext}} = 1
κext=1。最后,如果超过碰撞阈值,机器人切换到完全顺应模式(
κ
ϵ
=
0
\kappa_{\epsilon} = 0
κϵ=0)以避免损坏。接下来,我们将概述我们的系统识别和摩擦建模方法。
D. Rigid Body and Friction Identification
在我们的先前工作中[24],刚体模型和摩擦被同时识别为参数向量 β I \beta_I βI。结果仍然包含关于模型拟合和摩擦参数与单关节实验相比的合理性的显著误差。因此,在这项工作中,我们采用了一种顺序过程,其中预先识别的库仑和粘滞摩擦参数 d v , p , μ C , p d_v, p, \mu_C, p dv,p,μC,p被包含在识别过程中,以将未知参数的数量从59减少到45。
1) 识别模型与方法
为了识别目的,机器人动力学(1),包括适当的摩擦模型,可以写成回归器形式为
τ
m
=
Φ
β
−
τ
ext
,
\tau_m = \Phi \beta - \tau_{\text{ext}},
τm=Φβ−τext,
其中回归器矩阵
Φ
\Phi
Φ包含不同的基础和摩擦参数相关列
Φ
=
[
Φ
b
Φ
f
]
\Phi = \begin{bmatrix} \Phi_b & \Phi_f \end{bmatrix}
Φ=[ΦbΦf]。参数向量
β
=
[
β
b
d
v
μ
c
]
T
\beta = \begin{bmatrix} \beta_b & d_v & \mu_c \end{bmatrix}^T
β=[βbdvμc]T的元素表示基础、粘滞摩擦和库仑摩擦参数向量。摩擦模型的回归器矩阵可以分配为
Φ
f
(
q
˙
)
=
[
diag
q
˙
diagsgn
(
q
˙
)
]
.
\Phi_f(\dot{q}) = \begin{bmatrix} \text{diag} \dot{q} & \text{diag} \text{sgn}(\dot{q}) \end{bmatrix}.
Φf(q˙)=[diagq˙diagsgn(q˙)].
假设在识别过程中
τ
ext
=
0
\tau_{\text{ext}} = 0
τext=0,可以通过从等式两边减去(15)来合并(15)的影响。这导致摩擦校正的电机扭矩
τ
m
,
f
=
τ
m
−
Φ
f
(
q
˙
)
(
d
v
,
μ
c
)
T
=
Φ
β
−
Φ
f
(
q
˙
)
(
d
v
,
μ
c
)
T
=
Φ
b
β
b
.
\tau_{m,f} = \tau_m - \Phi_f(\dot{q})(d_v, \mu_c)^T \\= \Phi \beta - \Phi_f(\dot{q})(d_v, \mu_c)^T = \Phi_b \beta_b.
τm,f=τm−Φf(q˙)(dv,μc)T=Φβ−Φf(q˙)(dv,μc)T=Φbβb.
使用Moore-Penrose伪逆识别
β
b
\beta_b
βb的数值
β
^
b
=
(
F
T
Σ
−
1
F
)
−
1
F
T
Σ
−
1
b
,
\hat{\beta}_b = (F^T \Sigma^{-1} F)^{-1} F^T \Sigma^{-1} b,
β^b=(FTΣ−1F)−1FTΣ−1b,
填充了基于实验获得的优化傅里叶基础的关节角轨迹,持续时间为
t
f
t_f
tf[28]。信息矩阵
F
F
F和测量向量
b
b
b定义为
其中 τ m , f ( t i ) \tau_{m,f}(ti) τm,f(ti)是使用先前已知的摩擦参数 d v , p d_v, p dv,p和 μ c , p \mu_c, p μc,p的摩擦校正扭矩测量。协方差矩阵 Σ \Sigma Σ由执行器噪声方差组成。扭矩测量 τ m \tau_m τm是基于液压关节的腔室压力和电动机械关节的电流确定的。齿轮比和电机常数由制造商提供。关节角度 q q q由位置编码器测量。顺序方法的结果参数向量 β I I \beta_{II} βII,用于参数化(14),由元素 β I I = [ β b d v , p μ c , p ] T \beta_{II} = \begin{bmatrix} \beta_b & d_v, p & \mu_c, p \end{bmatrix}^T βII=[βbdv,pμc,p]T组成。
2) 单关节摩擦识别
通过以正负方向运行一组不同的恒定速度 q ˙ i \dot{q}_i q˙i并测量每个关节产生的扭矩 τ m \tau_m τm来识别关节摩擦参数 d v , p d_v, p dv,p和 μ c , p \mu_c, p μc,p。使用恒定速度间隔计算平均速度和扭矩。图4描绘了液压关节的关节摩擦特性,显示出显著的库仑和粘滞摩擦。通过使用阻抗控制器执行识别轨迹,可以进一步改善识别结果,如图5所示,与制造商实现的经过广泛调整的PD控制器相比,它显示出显著改善的速度跟踪。
3) 顺序识别结果
图6中可以找到基础参数向量 β ^ I = [ β ^ b , I d ^ v μ ^ C ] T \hat{\beta}_I = \begin{bmatrix} \hat{\beta}_b,I & \hat{d}_v & \hat{\mu}_C \end{bmatrix}^T β^I=[β^b,Id^vμ^C]T的比较,其中摩擦作为联合最小二乘优化的一部分被识别[24],和顺序方法的基础参数向量 β ^ I I \hat{\beta}_{II} β^II。模型和测量之间的低距离表明了良好的模型一致性。为了避免过拟合问题,这个实验的轨迹与用于识别的轨迹不同。当使用参数向量 β ^ I I \hat{\beta}_{II} β^II时,可以在液压关节中获得显著改进的结果,表I中测量和建模扭矩之间的均方误差较低表明了这一点。如[24]中所述,电动机械手腕关节(wry, wrx, wry2)似乎无法为Atlas系统识别,除非有工作的关节扭矩传感器。尽管在单轴实验中识别了摩擦,但预测的扭矩与测量的扭矩基本上没有相关性。这可能是由于基于电流的执行器侧扭矩测量显著降低了测量信息的质量。在下一节中,将概述使用Atlas系统进行的碰撞处理性能的实验结果。
IV. CONCLUSION
在本文中,我们设计并实现了一种两步识别方法和适用于关节机器人的适应性广义动量观测器。我们将这两种方法应用于人形机器人Atlas的手臂。两步识别显著提高了在高摩擦情况下的识别结果,与我们之前的工作相比。适应性观测器使得机器人能够精确且合规地操作。此外,可以整合摩擦模型以进一步提高观测器性能。提出的解决方案能够检测沿机器人结构的整个碰撞。总体而言,这为安全操作未知环境提供了关键特性,是实现(部分)液压驱动的人形机器人与人类安全协作的第一步。