CRF条件随机场

条件随机场

我们知道,分类问题可以分为硬分类和软分类两种,其中硬分类有 SVM,PLA,LDA 等。软分类问题大体上可以分为概率生成和概率判别模型,其中较为有名的概率判别模型有 Logistic 回归,生成模型有朴素贝叶斯模型。Logistic 回归模型的损失函数为交叉熵,这类模型也叫对数线性模型,一般地,又叫做最大熵模型,这类模型和指数族分布的概率假设是一致的。对朴素贝叶斯假设,如果将其中的单元素的条件独立性做推广到一系列的隐变量,那么,由此得到的模型又被称为动态模型,比较有代表性的如 HMM,从概率意义上,HMM也可以看成是 GMM 在时序上面的推广。

我们看到,一般地,如果将最大熵模型和 HMM相结合,那么这种模型叫做最大熵 Markov 模型(MEMM):

x4
y4
x2
y2
x1
y1
x3
y3

这个图就是将 HMM 的图中观测变量和隐变量的边方向反向,应用在分类中,隐变量就是输出的分类,这样 HMM 中的两个假设就不成立了,特别是观测之间不是完全独立的了。

HMM 是一种生成式模型,其建模对象为 p ( X , Y ∣ λ ) p(X,Y|\lambda) p(X,Yλ),根据 HMM 的概率图, p ( X , Y ∣ λ ) = ∏ t = 1 T p ( x t , y t ∣ λ , y t − 1 ) p(X,Y|\lambda)=\prod\limits_{t=1}^Tp(x_t,y_t|\lambda,y_{t-1}) p(X,Yλ)=t=1Tp(xt,ytλ,yt1)。我们看到,观测独立性假设是一个很强的假设,如果我们有一个文本样本,那么观测独立性假设就假定了所有的单词之间没有关联。

在 MEMM 中,建模对象是 p ( Y ∣ X , λ ) p(Y|X,\lambda) p(YX,λ),我们看概率图,给定 y t y_t yt x t , x t − 1 x_t,x_{t-1} xt,xt1 是不独立的,这样,观测独立假设就不成立了。根据概率图, p ( Y ∣ X , λ ) = ∏ t = 1 T p ( y t ∣ y t − 1 , X , λ ) p(Y|X,\lambda)=\prod\limits_{t=1}^Tp(y_t|y_{t-1},X,\lambda) p(YX,λ)=t=1Tp(ytyt1,X,λ)

MEMM 的缺陷是其必须满足局域的概率归一化(Label Bias Problem),我们看到,在上面的概率图中, p ( y t ∣ y t − 1 , x t ) p(y_t|y_{t-1},x_t) p(ytyt1,xt), 这个概率,如果 p ( y t ∣ y t − 1 ) p(y_t|y_{t-1}) p(ytyt1) 非常接近1,那么事实上,观测变量是什么就不会影响这个概率了。

对于这个问题,我们将 y y y 之间的箭头转为直线转为无向图(线性链条件随机场),这样就只要满足全局归一化了(破坏齐次 Markov 假设)。

x4
y4
x2
y2
x1
y1
x3
y3

CRF 的 PDF

线性链的 CRF 的 PDF 为 p ( Y ∣ X ) = 1 Z exp ⁡ ∑ t = 1 T ( F t ( y t − 1 , y t , x 1 : T ) ) p(Y|X)=\frac{1}{Z}\exp\sum\limits_{t=1}^T(F_t(y_{t-1},y_t,x_{1:T})) p(YX)=Z1expt=1T(Ft(yt1,yt,x1:T)),两两形成了最大团,其中 y 0 y_0 y0 是随意外加的一个元素。作为第一个简化,我们假设每个团的势函数相同 F t = F F_t=F Ft=F

对于这个 F F F,我们进一步,可以将其写为   F ( y t − 1 , y t , X ) = Δ y t − 1 , X + Δ y t , X + Δ y t , y t − 1 , X  F(y_{t-1},y_t,X)=\Delta_{y_{t-1},X}+\Delta_{y_{t},X}+\Delta_{y_t,y_{t-1},X}  F(yt1,yt,X)=Δyt1,X+Δyt,X+Δyt,yt1,X这三个部分,分别表示状态函数已经转移函数,由于整体的求和,可以简化为 $ F(y_{t-1},y_t,X)=\Delta_{y_{t},X}+\Delta_{y_t,y_{t-1},X}$。

我们可以设计一个表达式将其参数化:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \Delta_{y_t,y_…
其中 $g,f $ 叫做特征函数,对于 y y y S S S 种元素,那么 K ≤ S 2 , L ≤ S K\le S^2,L\le S KS2,LS

代入概率密度函数中:
p ( Y ∣ X ) = 1 Z exp ⁡ ∑ t = 1 T [ ∑ k = 1 K λ k f k ( y t − 1 , y t , X ) + ∑ l = 1 L η l g l ( y t , X ) ] p(Y|X)=\frac{1}{Z}\exp\sum\limits_{t=1}^T[\sum\limits_{k=1}^K\lambda_kf_k(y_{t-1},y_t,X)+\sum\limits_{l=1}^L\eta_lg_l(y_t,X)] p(YX)=Z1expt=1T[k=1Kλkfk(yt1,yt,X)+l=1Lηlgl(yt,X)]
对于单个样本,将其写成向量的形式。定义 y = ( y 1 , y 2 , ⋯   , y T ) T , x = ( x 1 , x 2 , ⋯   , x T ) T , λ = ( λ 1 , λ 2 , ⋯   , λ K ) T , η = ( η 1 , η 2 , ⋯   , η L ) T y=(y_1,y_2,\cdots,y_T)^T,x=(x_1,x_2,\cdots,x_T)^T,\lambda=(\lambda_1,\lambda_2,\cdots,\lambda_K)^T,\eta=(\eta_1,\eta_2,\cdots,\eta_L)^T y=(y1,y2,,yT)T,x=(x1,x2,,xT)T,λ=(λ1,λ2,,λK)T,η=(η1,η2,,ηL)T。并且有 f = ( f 1 , f 2 , ⋯   , f K ) T , g = ( g 1 , g 2 , ⋯   , g L ) T f=(f_1,f_2,\cdots,f_K)^T,g=(g_1,g_2,\cdots,g_L)^T f=(f1,f2,,fK)T,g=(g1,g2,,gL)T。于是:
p ( Y = y ∣ X = x ) = 1 Z exp ⁡ ∑ t = 1 T [ λ T f ( y t − 1 , y t , x ) + η T g ( y t , x ) ] p(Y=y|X=x)=\frac{1}{Z}\exp\sum\limits_{t=1}^T[\lambda^Tf(y_{t-1},y_t,x)+\eta^Tg(y_t,x)] p(Y=yX=x)=Z1expt=1T[λTf(yt1,yt,x)+ηTg(yt,x)]
不妨记: θ = ( λ , η ) T , H = ( ∑ t = 1 T f , ∑ t = 1 T g ) T \theta=(\lambda,\eta)^T,H=(\sum\limits_{t=1}^Tf,\sum\limits_{t=1}^Tg)^T θ=(λ,η)T,H=(t=1Tf,t=1Tg)T
p ( Y = y ∣ X = x ) = 1 Z ( x , θ ) exp ⁡ [ θ T H ( y t , y t − 1 , x ) ] p(Y=y|X=x)=\frac{1}{Z(x,\theta)}\exp[\theta^TH(y_t,y_{t-1},x)] p(Y=yX=x)=Z(x,θ)1exp[θTH(yt,yt1,x)]
上面这个式子是一个指数族分布,于是 Z Z Z 是配分函数。

CRF 需要解决下面几个问题:

  1. Learning:参数估计问题,对 N N N T T T 维样本, θ ^ = a r g m a x θ ∏ i = 1 N p ( y i ∣ x i ) \hat{\theta}=\mathop{argmax}\limits_{\theta}\prod\limits_{i=1}^Np(y^i|x^i) θ^=θargmaxi=1Np(yixi),这里用上标表示样本的编号。

  2. Inference:

    1. 边缘概率:
      p ( y t ∣ x ) p(y_t|x) p(ytx)
  3. 条件概率:一般在生成模型中较为关注,CRF 中不关注

  4. MAP 推断:
    y ^ = a r g m a x p ( y ∣ x ) \hat{y}=\mathop{argmax}p(y|x) y^=argmaxp(yx)

边缘概率

边缘概率这个问题描述为,根据学习任务得到的参数,给定了 p ( Y = y ∣ X = x ) p(Y=y|X=x) p(Y=yX=x),求解 p ( y t = i ∣ x ) p(y_t=i|x) p(yt=ix)。根据无向图可以给出:
p ( y t = i ∣ x ) = ∑ y 1 : t − 1 , y t + 1 : T p ( y ∣ x ) = ∑ y 1 : t − 1 ∑ y t + 1 : T 1 Z ∏ t ′ = 1 T ϕ t ′ ( y t ′ − 1 , y t ′ , x ) p(y_t=i|x)=\sum\limits_{y_{1:t-1},y_{t+1:T}}p(y|x)=\sum\limits_{y_{1:t-1}}\sum\limits_{y_{t+1:T}}\frac{1}{Z}\prod\limits_{t'=1}^T\phi_{t'}(y_{t'-1},y_{t'},x) p(yt=ix)=y1:t1,yt+1:Tp(yx)=y1:t1yt+1:TZ1t=1Tϕt(yt1,yt,x)
我们看到上面的式子,直接计算的复杂度很高,这是由于求和的复杂度在 O ( S T ) O(S^T) O(ST),求积的复杂度在 O ( T ) O(T) O(T),所以整体复杂度为 O ( T S T ) O(TS^T) O(TST)。我们需要调整求和符号的顺序,从而降低复杂度。

首先,将两个求和分为:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲&p(y_t=i|x)=\fr…
对于 Δ l \Delta_l Δl,从左向右,一步一步将 y t y_t yt 消掉:
Δ l = ∑ y t − 1 ϕ t ( y t − 1 , y t = i , x ) ∑ y t − 2 ϕ t − 1 ( y t − 2 , y t − 1 , x ) ⋯ ∑ y 0 ϕ 1 ( y 0 , y 1 , x ) \Delta_l=\sum\limits_{y_{t-1}}\phi_t(y_{t-1},y_t=i,x)\sum\limits_{y_{t-2}}\phi_{t-1}(y_{t-2},y_{t-1},x)\cdots\sum\limits_{y_0}\phi_1(y_0,y_1,x) Δl=yt1ϕt(yt1,yt=i,x)yt2ϕt1(yt2,yt1,x)y0ϕ1(y0,y1,x)
引入:
α t ( i ) = Δ l \alpha_t(i)=\Delta_l αt(i)=Δl
于是:
α t ( i ) = ∑ j ∈ S ϕ t ( y t − 1 = j , y t = i , x ) α t − 1 ( j ) \alpha_{t}(i)=\sum\limits_{j\in S}\phi_t(y_{t-1}=j,y_t=i,x)\alpha_{t-1}(j) αt(i)=jSϕt(yt1=j,yt=i,x)αt1(j)
这样我们得到了一个递推式。

类似地, Δ r = β t ( i ) = ∑ j ∈ S ϕ t + 1 ( y t = i , y t + 1 = j , x ) β t + 1 ( j ) \Delta_r=\beta_t(i)=\sum\limits_{j\in S}\phi_{t+1}(y_t=i,y_{t+1}=j,x)\beta_{t+1}(j) Δr=βt(i)=jSϕt+1(yt=i,yt+1=j,x)βt+1(j)。这个方法和 HMM 中的前向后向算法类似,就是概率图模型中精确推断的变量消除算法(信念传播)。

参数估计

在进行各种类型的推断之前,还需要对参数进行学习:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲\hat{\theta}&=\…
上面的式子中,第一项是对数配分函数,根据指数族分布的结论:
∇ λ ( log ⁡ Z ( x i , λ , η ) ) = E p ( y i ∣ x i ) [ ∑ t = 1 T f ( y t − 1 , y t , x i ) ] \nabla_\lambda(\log Z(x^i,\lambda,\eta))=\mathbb{E}_{p(y^i|x^i)}[\sum\limits_{t=1}^Tf(y_{t-1},y_t,x^i)] λ(logZ(xi,λ,η))=Ep(yixi)[t=1Tf(yt1,yt,xi)]
其中,和 η \eta η 相关的项相当于一个常数。求解这个期望值:
E p ( y i ∣ x i ) [ ∑ t = 1 T f ( y t − 1 , y t , x i ) ] = ∑ y p ( y ∣ x i ) ∑ t = 1 T f ( y t − 1 , y t , x i ) \mathbb{E}_{p(y^i|x^i)}[\sum\limits_{t=1}^Tf(y_{t-1},y_t,x^i)]=\sum\limits_{y}p(y|x^i)\sum\limits_{t=1}^Tf(y_{t-1},y_t,x^i) Ep(yixi)[t=1Tf(yt1,yt,xi)]=yp(yxi)t=1Tf(yt1,yt,xi)
第一个求和号的复杂度为 O ( S T ) O(S^T) O(ST),重新排列求和符号:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲\mathbb{E}_{p(y…
和上面的边缘概率类似,也可以通过前向后向算法得到上面式子中的边缘概率。

于是:
∇ λ L = ∑ i = 1 N ∑ t = 1 T [ f ( y t − 1 , y t , x i ) − ∑ y t − 1 ∑ y t p ( y t − 1 , y t ∣ x i ) f ( y t − 1 , y t , x i ) ] \nabla_\lambda L=\sum\limits_{i=1}^N\sum\limits_{t=1}^T[f(y_{t-1},y_t,x^i)-\sum\limits_{y_{t-1}}\sum\limits_{y_t}p(y_{t-1},y_t|x^i)f(y_{t-1},y_t,x^i)] λL=i=1Nt=1T[f(yt1,yt,xi)yt1ytp(yt1,ytxi)f(yt1,yt,xi)]
利用梯度上升算法可以求解。对于 η \eta η 也是类似的过程。

译码

译码问题和 HMM 中的 Viterbi 算法类似,同样采样动态规划的思想一层一层求解最大值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值