数独问题求解三:数独终局生成

数独问题求解三:数独终局生成

1、主要过程

由上一篇文章可知,本题中解决数独终局的问题的关键是对1e6个数独进行生成
在解决的过程中,我设置了一个全局变量field数组来存储数独
由于最多生成1e6个数独,每个数独由81个数字组成,每一行的最后一位是换行符,因此设置了数组大小为1e8.
数组中数独的数字用字符的形式保存

以下为主要代码段
这段代码为对数独的4到6行进行全排列,共有6种排列方式,因此循环6次,每次进入循环时都要判断是否已经生成了足够的数独。

for (int i = 0; i < 6; i++)//4到6行的六种排列方式
 {
  if (flag >= n)
  {
   break;
  }
  if (i)
  {
   //交换4到6行
   next_permutation(trans + 3, trans + 6);     //全排列函数,输出所有比当前排列大的排列,顺序是从小到大。
   trans[6] = 2, trans[7] = 5, trans[8] = 8;
  }

这段与上段思路相同,为对7到9行进行排列

for (int j = 0; j < 6; j++)//7到9行的六种排列方式
  {
   if (flag >= n)
    break;
   if (j)
    //交换7到9行
    next_permutation(trans + 6, trans + 9);   //全排列函数

先手动输入第一行,根据题设,我生成的数独第一个数字应该是2,然后对第一行进行全排列,共有8!=40320种方式

char row[10] = "213456789";
   //先生成第一种情况
   for (int k = 0; k < 40320; k++)//第一行的8!种排列方式
   {
    if (flag >= n)
     break;
    if (k)
     next_permutation(row + 1, row + 9);//第一个数字不能换

将每一种排列方式进行变换,利用trans数组(trans[9] = { 0,3,6,1,4,7,5,2,8 })进行,并将数独存放到数组中,flag++。

for (int i = 0; i < 9; i++)
    {
     for (int j = 0; j < 9; j++)
     {
      field[m + flag] = row[(j + trans[i]) % 9];
      m += 1;
     }
     field[(m - 1) + flag] = '\n';
     //m += 1;
    }
    field[m + flag] = '\n';
    flag++;

2、结果

为了知道程序运行的时间,我加入了clock()函数

printf("\n用时:%.2lfs", (double)clock() / CLOCKS_PER_SEC);//调用clock()函数得出运行时间

在这里插入图片描述
代码运行后,可以在约2s的时间内生成1e6个数独终局
通过对比,程序运行效率良好

3、一些问题

在编码的过程中,我遇到了诸多问题,虽然都很蠢但是还是在此列举出来,避免踩坑
1)在声明field数组时没有考虑到数组过大造成的栈溢出,后改为申请全局变量
2)在使用Visual Studio2017编码时,遇到了无法查找或打开 PDB 文件的报错,该问题可通过对编译器参数修改解决
3)在解决输出格式时,忽略了程序结束后的换行问题,导致输出field数组时,总是只输出第一个数组

发布了9 篇原创文章 · 获赞 2 · 访问量 3423
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览