arcgis 投影变换

目录

1、目的:

2、背景知识:

2.1、地理坐标系统与投影坐标系统的区别(看单位)

2.2、arcgis中“定义投影”与“投影”或者“投影栅格”的区别

2.3、中国常用的投影坐标系统

3、投影转换方法


1、目的:

使用arcgis转换文件投影。

WCS_WGS_1984 转成 Krasovsky_1940_Albers

2、背景知识:

参考:(太细,太专业)坐标系统与投影变换及在ARCGIS中的应用(https://blog.csdn.net/jax_lee/article/details/6764516

2.1、地理坐标系统与投影坐标系统的区别(看单位)

参考:(两者区别)ArcGIS教程:ArcGIS中的坐标系统定义与投影转换(https://blog.csdn.net/neimeng0/article/details/81557851

  • 地理坐标系统

地理坐标系 (GCS) 使用三维球面来定义地球上的位置。单位为度(arcgis右击-属性-源,可以查看)

GCS中的重要参数包括角度测量单位、本初子午线和基准面(基于旋转椭球体)。

举例:GCS_WGS_1984


  • 投影坐标系统

   将球面坐标转化为平面坐标的过程称为投影。投影坐标系的实质是平面坐标系统,地图单位通常为米

投影坐标系在二维平面中进行定义。与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定。投影坐标系始终基于地理坐标系,即:

    “投影坐标系 = 地理坐标系+投影算法函数”。

举例:Krasovsky_1940_Albers

投影是 Albers,基于的地理坐标系统是 GCS_Krasovsky_1940


2.2、arcgis中“定义投影”与“投影”或者“投影栅格”的区别

  • 定义投影

文件具有投影信息,(你知道是啥)但是丢失了,使用“定义投影”工具添加投影。

相当于贴标签。(慎用,小心乱用)


  • 投影

(1)文件只有地理坐标系统,没有投影坐标系统。可已使用此工具,添加一个投影坐标系统。

(2)文件投影不符合绘图要求,需要转换。使用此工具。(本文就是此需求)

(3)文件有投影坐标系统,但是不想要,文件只保留地理坐标系统就行。也可以使用改工具转换。

2.3、中国常用的投影坐标系统

参考:(文章投稿常用投影)中国地图标准坐标和投影参数(附ArcGIS操作)(https://blog.csdn.net/Jinhua_Wu/article/details/88369796

  • 地理坐标

  GCS_Krasovsky_1940(克拉索夫斯基_1940椭球体)
  具体参数如下图:
        在这里插入图片描述
        背景知识:(参考自https://blog.csdn.net/jax_lee/article/details/6764516
  每个国家或地区都有各自的基准面,我们通常所说的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
  我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系西安80坐标系。目前大地测量基本上仍以北京54坐标系作为参照。
  WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。


  • 投影坐标

  Krasovsky_1940_Albers
  (阿尔伯斯投影,又名“正轴等积割圆锥投影”、 “双轴纬线等积圆锥投影”,即经过两次纬线校正)


3、投影转换方法

第一步:数据管理工具-投影和变换-创建自定义地理(坐标)变换

因为两者地理坐标系统不一样,需要创建此变换。用做栅格投影的输入参数。


第二步:数据管理工具-投影和变换-栅格-投影栅格


第三步:右击文件-属性-源-查看坐标

 

 

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值