【Simulink】光伏电池数学模型公式推导和初步仿真(FCS-MPC/扰动观察MPPT)

在这里插入图片描述

1. 光伏电池发电的基本原理

光伏电池发电的基本原理主要基于光电效应半导体物理

1️⃣ 光电效应
光伏电池的工作原理首先依赖于光电效应。光电效应是指当光子(光的粒子)照射到某些材料(如硅)上时,可以将材料中的电子激发到更高的能量状态,从而使电子脱离原子的束缚,形成自由电子-空穴对

2️⃣ 半导体材料
光伏电池通常由半导体材料制成,最常用的材料是单晶硅、多晶硅或者薄膜材料。半导体材料在特定条件下(如掺杂)可以控制其导电性,实现光生电流的产生。

3️⃣ P-N 结的形成
光伏电池内部通过掺杂技术形成 P-N 结:

  • P 型半导体:通过在硅中掺入能 提供空穴(正电荷载流子)的元素(如硼) 形成。
  • N 型半导体:通过掺入能 提供自由电子(负电荷载流子)的元素(如磷) 形成。
    P-N 结的形成导致在接触面处产生电场,能够分离光生的电子和空穴。

4️⃣ 光照与电流产生
当光线(光子)照射到光伏电池表面,光子能量高于半导体材料的带隙能量时,会激发出电子,形成电子-空穴对。这些自由电子在 P-N 结形成的电场作用下,被驱动向 N 型半导体移动,而空穴则向 P 型半导体移动

5️⃣ 电流输出
分离的电子和空穴流动形成电流。当光伏电池连接到外部负载时,电子流动产生直流电

2. 光伏电池数学模型

光伏电池可以被等效为一个电流源和一个理想二极管的并联电路。原因如下:

1️⃣ 光伏效应产生电流
光伏电池通过光伏效应将光能转化为电能。当光照到光伏电池时,光子激发材料中的电子,形成电子-空穴对。这些电子在 P-N 结的电场作用下,从 P 型区域移动到 N 型区域,形成光生电流。因此,光伏电池的输出可以被视为一个恒定的电流源,代表了在特定光照条件下产生的光生电流。

2️⃣ 理想二极管的行为
在光伏电池中,P-N 结的存在使其具有二极管的特性。当没有光照或光照不足时,电池内会出现反向电流(通过 P-N 结的多余电子和空穴产生的),与理想二极管的反向特性相似。在正向工作时,随着电压V的增加,二极管会根据 Shockley 方程呈指数增长。

此外,考虑材料的电阻率等方面因素,在上述等效电路的基础上并联一个电阻 R s h R_{sh} Rsh,并串联一个电阻 R s R_s Rs

上述模型为单二极管模型,实际上还有其他等效模型,比如双二极管、三二极管等等,参见:Słowik, Adam, et al. “An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm.” Applied Energy 364 (2024): 123208.

在这里插入图片描述

上图中, I L I_L IL为光生电流, I 0 I_0 I0为二极管的反向饱和电流, V p v V_{pv} Vpv为光伏电池输出电压, I p v I_{pv} Ipv为光伏电池输出电流。

根据基尔霍夫电流定律:
I p ν = I L − I D − I s h I_{p\nu}=I_L-I_D-I_{sh} Ipν=ILIDIsh
其中, I D I_D ID是二极管反向电流, I s h I_{sh} Ish是并联的泄露电流( R s h R_{sh} Rsh上的电流,从上到下)。

下面的公式来可以用来计算二极管反向电流 I D I_D ID
I D = I 0 ( e V D V T − 1 ) = I 0 ( e q ( V p ν + I p ν R s ) n k T − 1 ) I_D = I_0 (e^{\frac{V_D}{V_T}} - 1)=I_0 (e^{\frac{q\left(V_{p\nu}+I_{p\nu}R_s\right)}{nkT}} - 1) ID=I0(eVTVD1)=I0(enkTq(Vpν+IpνRs)1)
其中, I R I_R IR是反向电流, I s I_s Is是饱和电流, V D V_D VD是反向电压, V T = k n T / q V_T=knT/q VT=knT/q是热电势。 q q q为单位电荷(1.6×10^-19C), k k k为玻耳兹曼常数(1 .38×10^-23J/K),T为绝对温度(K),n为二极管指数,一般介于1~2之间。根据电路方程, V D = V p ν + I p ν R s V_D=V_{p\nu}+I_{p\nu}R_s VD=Vpν+IpνRs

代入原来的公式,得到:
I p ν = I L − I 0 ( e q ( V p ν + I p ν R s ) n k T − 1 ) − V p ν + I p ν R s R s h I_{p\nu}=I_L-I_0\Bigg(e^{\frac{q\left(V_{p\nu}+I_{p\nu}R_s\right)}{nkT}}-1\Bigg)-\frac{V_{p\nu}+I_{p\nu}R_s}{R_{sh}} Ipν=ILI0(enkTq(Vpν+IpνRs)1)RshVpν+IpνRs

3. 光伏电池简化数学模型

光伏生产商一般会提供几个重要技术参数,包括 I s c I_{sc} Isc(短路电流 Short-circuit current)、 V o c V_{oc} Voc(开路电压 Open circuit voltage)、 I m I_m Im(最大功率点的负载电流)、 V m V_m Vm(最大功率点的负载电压)、 P m P_m Pm (最大功率 Maximum Power)、T(光伏温度)和 S(光照强度)。接下来基于上述参数构建模型。

在之前求出的数学模型的基础上作简化,得到工程模型:

1)等效串联电阻 R s R_s Rs远远小于等效并联电阻 R s h R_{sh} Rsh,所以光生电流 I L I_L IL远远大于光伏电池的漏电流 I s h I_{sh} Ish,忽略上式的最后一项,即:
I p ν = I L − I 0 ( e q ( V p ν + I p ν R s ) n k T − 1 ) I_{p\nu}=I_L-I_0\Bigg(e^{\frac{q\left(V_{p\nu}+I_{p\nu}R_s\right)}{nkT}}-1\Bigg) Ipν=ILI0(enkTq(Vpν+IpνRs)1)

2)等效串联电阻 R s R_s Rs远远小于PN结正向导通电阻,当光伏电池发生短路时,其短路电流 I s c I_{sc} Isc可等效为光生电流 I L I_L IL,即:
I p ν = I s c − I 0 ( e q ( V p ν + I p ν R s ) n k T − 1 ) I_{p\nu}=I_{sc}-I_0\Bigg(e^{\frac{q\left(V_{p\nu}+I_{p\nu}R_s\right)}{nkT}}-1\Bigg) Ipν=IscI0(enkTq(Vpν+IpνRs)1)

3)在标准状况条件下,将光伏电池的开路电压等于标准环境条件下的开路电压 V o c V_{oc} Voc,光伏电池的峰值电压等于标准环境条件下的峰值电压 V m V_m Vm,光伏电池的峰值电流等于标准环境条件下的峰值电流 I m I_m Im

设参数 C 1 C_{1} C1 C 2 C_{2} C2
C 1 = ( 1 − I m I s c ) e ( − V m C 2 V o c ) C_{1}=\left(1-\frac{I_{m}}{I_{s c}}\right) e^{\left(-\frac{V_{m}}{C_{2} V_{oc}}\right)} C1=(1IscIm)e(C2VocVm)
C 2 = ( V m V o c − 1 ) [ ln ⁡ ( 1 − I m I s c ) ] − 1 C_{2}=\left(\frac{V_{m}}{V_{oc}}-1\right)\left[\ln \left(1-\frac{I_{m}}{I_{sc}}\right)\right]^{-1} C2=(VocVm1)[ln(1IscIm)]1

代入光伏电池输出电流公式,得到:
I p v = I s c ( 1 − C 1 ( e V p v C 2 V o c − 1 ) ) I_{pv}=I_{sc}\left(1-C_{1}\left(e^{\frac{V_{pv}}{C_{2} V_{oc}}}-1\right)\right) Ipv=Isc(1C1(eC2VocVpv1))

在标准状况条件下,可通过光伏电池的峰值电压、峰值电流、开路电压、短路电流求得参数 C 1 C_{1} C1 C 2 C_{2} C2,得到光伏电池在标准环境条件下的输出特性。

一般峰值电压、峰值电流、开路电压、短路电流这些参数会受到太阳的光照强度 S 和温度 T 影响。当日射强度及电池温度不是参考日射强度和参考电池温度时,必须考虑环境温度条件对太阳电池特性的影响。对这些参数在实际温度和光照强度条件(标准电池温度 T r e f T_{ref} Tref (比如25℃) )和标准光照强度 S r e f S_{ref} Sref (比如1000W/m^2))下进行折算:
Δ T = T − T r e f Δ S = S S r e f − 1 I s c ′ = I s c S S r e f ( 1 + α Δ T ) V o c ′ = V o c ( 1 − c Δ T ) ln ⁡ ( 1 + b Δ S ) I m ′ = I m S S r e f ( 1 + α Δ T ) V m ′ = V m ( 1 − c Δ T ) ln ⁡ ( 1 + b Δ S ) \begin{array}{l} \Delta T=T-T_{ref} \\ \Delta S=\frac{S}{S_{ref}}-1 \\ I_{sc}^{\prime}=I_{{sc}}\frac{S}{S_{ref}}(1+\alpha \Delta T) \\ V_{oc}^{\prime}=V_{{oc}}(1-c \Delta T) \ln (1+b \Delta S) \\ I_{m}^{\prime}=I_{m}\frac{S}{S_{ref}}(1+\alpha \Delta T) \\ V_{m}^{\prime}=V_{m}(1-c \Delta T) \ln (1+b \Delta S) \end{array} ΔT=TTrefΔS=SrefS1Isc=IscSrefS(1+αΔT)Voc=Voc(1cΔT)ln(1+bΔS)Im=ImSrefS(1+αΔT)Vm=Vm(1cΔT)ln(1+bΔS)
推算过程中假定 I-V 特性曲线基本形状不变,系数a、b、c的典型值为:a=0.0025/℃,b=0.5,c=0.00288/℃。

除此之外,还有另一种处理方式,详见:[1] 杨鲁发.光伏并网发电系统MPPT和孤岛检测技术的研究和实现[D].华北电力大学(河北),2010. 和 [5] 苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,(04):409-412. 中的方法1。

4. Simulink模型构建

Simulink自带的 PV Array 模块:
在这里插入图片描述

在这里插入图片描述

内部:

在这里插入图片描述

在这里插入图片描述

我们可以参考模块内部,建立光伏电池仿真模型。

在这里插入图片描述

外接boost变换器和阻性负载,控制部分采用PI+FCS-MPC试试。
在这里插入图片描述

负载端电压:

在这里插入图片描述

稳定在540V左右。

为了充分利用光伏电池的输出量,最大程度的发挥光伏电池的作用,实际上一般采用MPPT算法使光伏电池工作在最大功率点。

MPPT-扰动观察

在这里插入图片描述

MPPT:
在这里插入图片描述

光伏输出功率:
在这里插入图片描述

最大功率的计算即为Vm*Im (单个电池)

再比如:

在这里插入图片描述

最大功率 Pm = 29 * 7.35 * 10 * 40 = 85260

绘制 I-V、P-V 曲线

T=25℃,S=1000W/m^2

I-V
在这里插入图片描述

P-V
在这里插入图片描述

T=25℃,S=800W/m^2

I-V
在这里插入图片描述

P-V
在这里插入图片描述

T=20℃,S=1000W/m^2

I-V
在这里插入图片描述

P-V

在这里插入图片描述

很明显,不同温度、光照强度下的光伏特性I-V、P-V曲线不同。

模型:https://mbd.pub/o/bread/Zp6ZlJts

参考

[1] 杨鲁发.光伏并网发电系统MPPT和孤岛检测技术的研究和实现[D].华北电力大学(河北),2010.

[2] 关皓闻.含光伏发电系统的负荷模型参数辨识及电网稳定性研究[D].华北电力大学,2022.

[3] Słowik, Adam, et al. “An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm.” Applied Energy 364 (2024): 123208.

[4] 童俊杰,叶成彬,陈贤钰,等.基于太阳能的电动车光蓄能源供电管理系统[J].环境技术,2021,39(03):111-116+130.

[5] 苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,(04):409-412.

基于MATLAB/Simulink的光伏电池物理、工程模型建模仿真

### 光伏电池数学模型发展历程与现状 光伏电池作为太阳能发电的核心组件,其性能分析优化依赖于精确的数学模型。以下是关于光伏电池数学模型发展过程及其当前状态的详细介绍。 #### 一、早期单二极管模型 最早的光伏电池数学模型主要基于理想化的单二极管电路理论[^1]。该模型通过描述电流电压之间的非线性关系来表征光伏电池的行为。具体表达式如下: ```matlab function I = single_diode_model(V, Isc, Voc, Rs, Rsh, n) % 单二极管模型计算函数 q = 1.6e-19; k = 1.38e-23; T = 298; IL = Isc; Io = (IL / ((exp(q * Voc / (n * k * T)) - 1))); I = IL - Io .* (exp((q ./ (n * k * T)).* (V + I.*Rs)) - V./Rsh); end ``` 这种模型简单易用,但在复杂工况下精度有限,无法充分考虑温度、光照强度等因素的影响[^2]。 --- #### 二、双二极管改进型模型 为了提高模型准确性,研究者引入了双二极管结构,进一步细化了载流子复合机制以及串联电阻效应。相比单二极管模型,双二极管模型能够更真实地模拟实际工作条件下的输出特性[^3]。然而,由于参数增多,求解难度也显著增加。 --- #### 三、现代机器学习辅助建模技术 近年来,随着人工智能技术的发展,深度学习被广泛应用于光伏电池特性的建模中。这种方法利用神经网络强大的拟合能力,直接从实验数据中提取特征并建立映射关系,从而避免传统解析模型中的假设局限性。例如,卷积神经网络(CNN)可以用于处理图像化输入的数据集;而循环神经网络(RNN),特别是长短时记忆网络(LSTM),则擅长捕捉时间序列的变化规律。 --- #### 四、模糊自适应PID控制与MPPT算法结合 针对最大功率点跟踪(MPPT)问题,有学者提出了融合模糊逻辑控制器与自适应比例积分微分调节器的方法。此方案不仅提高了系统的动态响应速度,还增强了抗干扰能力,在不同环境条件下均表现出良好的鲁棒性稳定性。 --- #### 当前挑战与发展前景 尽管现有模型已经取得了一定成果,但仍存在诸多亟待解决的技术难题: - 数据质量不足可能导致某些先进算法难以发挥预期效果; - 不同场景间的迁移泛化能力仍需加强; - 实际应用过程中硬件成本较高也是一个不可忽视的因素。 总之,未来的研究方向应着重关注如何平衡模型复杂度与工程实用性之间的矛盾,并积极探索新型材料技术带来的潜在机遇。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不雨_亦潇潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值