高斯积分e^(-x^2)在无限域上的定积分

题目

计算 I = ∫ − ∞ + ∞ e − x 2 d x I=\int_{-\infty}^{+\infty}{e^{-x^2}dx} I=+ex2dx

方法一

由于积分值与积分变量无关
I = ∫ − ∞ + ∞ e − x 2 d x = ∫ − ∞ + ∞ e − y 2 d y I=\int_{-\infty}^{+\infty}{e^{-x^2}dx}=\int_{-\infty}^{+\infty}{e^{-y^2}dy} I=+ex2dx=+ey2dy

I 2 = ∫ − ∞ + ∞ e − x 2 d x ⋅ ∫ − ∞ + ∞ e − y 2 d y = ∫ − ∞ + ∞ d x ∫ − ∞ + ∞ e − x 2 ⋅ e − y 2 d y = ∫ − ∞ + ∞ d x ∫ − ∞ + ∞ e − ( x 2 + y 2 ) d y I^2=\int_{-\infty}^{+\infty}{e^{-x^2}dx}\cdot \int_{-\infty}^{+\infty}{e^{-y^2}dy}=\int_{-\infty}^{+\infty}{dx}\int_{-\infty}^{+\infty}{e^{-x^2}\cdot e^{-y^2}dy}=\int_{-\infty}^{+\infty}{dx}\int_{-\infty}^{+\infty}{e^{-\left( x^2+y^2 \right)}dy} I2=+ex2dx+ey2dy=+dx+ex2ey2dy=+dx+e(x2+y2)dy
进行极坐标变换
令  x = r cos ⁡ θ ,   y = r sin ⁡ θ \text{令\ }x=r\cos \theta ,\ y=r\sin \theta  x=rcosθ, y=rsinθ
J = ∣ ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ ∣ = ∣ cos ⁡ θ − r sin ⁡ θ sin ⁡ θ r cos ⁡ θ ∣ = r J=\left| \begin{matrix} \frac{\partial x}{\partial r}& \frac{\partial x}{\partial \theta}\\ \frac{\partial y}{\partial r}& \frac{\partial y}{\partial \theta}\\ \end{matrix} \right|=\left| \begin{matrix} \cos \theta& -r\sin \theta\\ \sin \theta& r\cos \theta\\ \end{matrix} \right|=r J=rxryθxθy=cosθsinθrsinθrcosθ=r
∴   I 2 = ∫ 0 2 π d θ ∫ 0 + ∞ r ⋅ e − r 2 d r = π \therefore \ I^2=\int_0^{2\pi}{d\theta}\int_0^{+\infty}{r\cdot e^{-r^2}dr}=\pi  I2=02πdθ0+rer2dr=π
∴   I = π \therefore \ I=\sqrt{\pi}  I=π

方法二

定积分 I = ∫ − ∞ + ∞ e − x 2 d x I=\int_{-\infty}^{+\infty}{e^{-x^2}dx} I=+ex2dx的几何意义就是曲线 y = e − x 2 y=e^{-x^2} y=ex2 x x x轴围成的面积。
在这里插入图片描述

y = e − x 2 y=e^{-x^2} y=ex2 y y y轴旋转,设旋转体的体积为 V V V
对环取微元,如图所示
在这里插入图片描述

d V = e − r 2 ⋅ 2 π r d r dV=e^{-r^2}\cdot 2\pi rdr dV=er22πrdr
V = ∫ 0 + ∞ e − r 2 ⋅ 2 π r d r = π V=\int_0^{+\infty}{e^{-r^2}\cdot 2\pi rdr}=\pi V=0+er22πrdr=π
下面用另一种方法计算体积 V V V
固定y,取一片切片,切片的厚度为 d y dy dy,设切片面积为 A ( y ) A(y) A(y),如图所示
在这里插入图片描述
在这里插入图片描述

V = ∫ − ∞ + ∞ A ( y ) d y V=\int_{-\infty}^{+\infty}{A\left( y \right) dy} V=+A(y)dy
其中
A ( y ) = ∫ − ∞ + ∞ e − r 2 d x   ( 其中 r 2 = x 2 + y 2 ) A\left( y \right) =\int_{-\infty}^{+\infty}{e^{-r^2}dx}\ \left( \text{其中}r^2=x^2+y^2 \right) A(y)=+er2dx (其中r2=x2+y2)
A ( y ) = ∫ − ∞ + ∞ e − ( x 2 + y 2 ) d x = e − y 2 ⋅ I A\left( y \right) =\int_{-\infty}^{+\infty}{e^{-\left( x^2+y^2 \right)}dx}=e^{-y^2}\cdot I A(y)=+e(x2+y2)dx=ey2I
∴ V = ∫ − ∞ + ∞ A ( y ) d y = I ⋅ ∫ − ∞ + ∞ e − y 2 d y = I 2 \therefore V=\int_{-\infty}^{+\infty}{A\left( y \right) dy}=I\cdot \int_{-\infty}^{+\infty}{e^{-y^2}dy}=I^2 V=+A(y)dy=I+ey2dy=I2
∴ I 2 = π   ⟹   I = π \therefore I^2=\pi \ \Longrightarrow \ I=\sqrt{\pi} I2=π  I=π

方法三


D 1 = { ( x , y )   ∣   x 2 + y 2 ≤ R 2 } D1=\left\{ \left( x,y \right) \ |\ x^2+y^2\leq R^2 \right\} D1={(x,y)  x2+y2R2}
D 2 = { ( x , y )    ∣    − R < x < R   ,   − R < y < R } D2=\left\{ \left( x,y \right) \,\,|\,\,-R<x<R\ ,\ -R<y<R \right\} D2={(x,y)R<x<R , R<y<R}
D 3 = { ( x , y )    ∣    x 2 + y 2 ≤ 2 R 2 } D3=\left\{ \left( x,y \right) \,\,|\,\,x^2+y^2\leq 2R^2 \right\} D3={(x,y)x2+y22R2}

由于 D 1 ⊂ D 2 ⊂ D 3 D1\subset D2\subset D3 D1D2D3,所以 ∬ D 1 e − x 2 − y 2 d σ ≤ ∬ D 2 e − x 2 − y 2 d σ ≤ ∬ D 3 e − x 2 − y 2 d σ \iint\limits_{D1}{e^{-x^2-y^2}d\sigma}\leq \iint\limits_{D2}{e^{-x^2-y^2}d\sigma}\leq \iint\limits_{D3}{e^{-x^2-y^2}d\sigma} D1ex2y2dσD2ex2y2dσD3ex2y2dσ
其中
∬ D 1 e − x 2 − y 2 d σ = ∫ 0 2 π d θ ∫ 0 R r ⋅ e − r 2 d r = π ( 1 − e − R 2 ) \iint\limits_{D1}{e^{-x^2-y^2}d\sigma}=\int_0^{2\pi}{d\theta}\int_0^R{r\cdot e^{-r^2}dr}=\pi \left( 1-e^{-R^2} \right) D1ex2y2dσ=02πdθ0Rrer2dr=π(1eR2)
∬ D 2 e − x 2 − y 2 d σ = ∫ − R R e − x 2 d x ⋅ ∫ − R R e − y 2 d y = ( ∫ − R R e − x 2 d x ) 2 \iint\limits_{D2}{e^{-x^2-y^2}d\sigma}=\int_{-R}^R{e^{-x^2}dx}\cdot \int_{-R}^R{e^{-y^2}dy}=\left( \int_{-R}^R{e^{-x^2}dx} \right) ^2 D2ex2y2dσ=RRex2dxRRey2dy=(RRex2dx)2
∬ D 3 e − x 2 − y 2 d σ = ∫ 0 2 π d θ ∫ 0 2 R r ⋅ e − r 2 d r = π ( 1 − e − 2 R 2 ) \iint\limits_{D3}{e^{-x^2-y^2}d\sigma}=\int_0^{2\pi}{d\theta}\int_0^{\sqrt{2}R}{r\cdot e^{-r^2}dr}=\pi \left( 1-e^{-2R^2} \right) D3ex2y2dσ=02πdθ02 Rrer2dr=π(1e2R2)
∴   π ( 1 − e − R 2 ) ≤ ( ∫ − R R e − x 2 d x ) 2 ≤ π ( 1 − e − 2 R 2 ) \therefore \ \pi \left( 1-e^{-R^2} \right) \leq \left( \int_{-R}^R{e^{-x^2}dx} \right) ^2\leq \pi \left( 1-e^{-2R^2} \right)  π(1eR2)(RRex2dx)2π(1e2R2)
当 R → + ∞ 时,由夹逼定理可得 ( ∫ − ∞ ∞ e − x 2 d x ) 2 = π \text{当}R\rightarrow +\infty \text{时,由夹逼定理可得}\left( \int_{-\infty}^{\infty}{e^{-x^2}dx} \right) ^2=\pi R+时,由夹逼定理可得(ex2dx)2=π
∴ ∫ − ∞ ∞ e − x 2 d x = π \therefore \int_{-\infty}^{\infty}{e^{-x^2}dx}=\sqrt{\pi} ex2dx=π

答疑

(1)dr积分为什么从0开始,不从1

可以看一下旋转以后的图像
在这里插入图片描述
在旋转以后算体积则积分区域是整个zox平面,这里绕y轴旋转,可以认为z轴是躺着的,如图所示
在这里插入图片描述
前面的太抽象的话也可以用二重积分换元法来看
∫ − ∞ + ∞ ∫ − ∞ + ∞ e − ( x 2 + z 2 ) d x d z = ∫ 0 2 π d θ ∫ 0 + ∞ r e − r 2 d r \int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{e^{-\left( x^2+z^2 \right)}dxdz}}=\int_0^{2\pi}{d\theta}\int_0^{+\infty}{re^{-r^2}dr} ++e(x2+z2)dxdz=02πdθ0+rer2dr

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值