分享下最近的Nvidia GPU 3060 laptop GPU、linzhi、Tesla算力曲线

分享下最近的Nvidia GPU 3060 laptop GPU. 算力曲线,

单台笔记本实际算力40MHash,超频可以到48Mhash,我一般设置到46M Hash。风扇睡觉时放在同一个房间略微有点声音,不在同一个房间基本听不到,不影响睡眠(我睡觉对声音不敏感,对光线敏感;所以这样还行)。投入7000元左右,目前日价值约30元(家用电费约3度电合计约3元);大约8~10个月可以白得一个笔记本,个人觉得还行。个人一直想添置一个高端笔记本在家做AI编程,感谢潮流,让我一年内白捡一个笔记本。

账户下另外一台是一台Tesla T4*4的服务器,服务器专网非常稳定从不掉线;目前在笔记本上使用家用无线网络,每天会推送1次掉线超过15分钟信息(然后软件会自动上线)。

	https://www.f2pool.com/mining-user-eth/bf03f6f3791d7df4e17bac226db81c74

分享下一直关注的linzhi phoenix 算力曲线:

这是2台的曲线,每台实际算力约2400MHash

	https://www.f2pool.com/mining-user-eth/50778c706058ebd745ba4397a1126150   
### 安装和配置 CUDA 环境 对于 NVIDIA GeForce RTX 3050 Ti Laptop GPU 的 CUDA 配置,需特别关注兼容性和安装细节。 #### 显卡与 CUDA 版本匹配 NVIDIA GeForce RTX 3050 Ti 笔记本电脑 GPU 支持 CUDA 计 sm_86。然而,在某些情况下可能会遇到不兼容警告,这是因为 PyTorch 或其他依赖库可能尚未完全适配较新的显卡架构[^1]。 为了规避此问题并确保稳定运行,建议采用特定版本组合来构建开发环境: - 使用 `pip` 命令指定较低版本的 PyTorch 和对应的 CUDA 工具包版本进行安装: ```bash pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 ``` 上述命令会下载适用于 CUDA 11.3 的 PyTorch 及其相关组件,该版本已被验证能够良好支持 RTX 3050 Ti 这样的新型号笔记本显卡[^3]。 #### 检查安装情况 完成安装之后可以通过 Python 脚本来确认 GPU 是否被正确识别以及 CUDA 功能是否可用: ```python import torch print(f"CUDA Available: {torch.cuda.is_available()}") print(f"Current Device: {torch.cuda.current_device()}") print(f"Device Name: {torch.cuda.get_device_name(torch.cuda.current_device())}") ``` 如果一切正常,则应看到类似于以下输出的信息: ``` CUDA Available: True Current Device: 0 Device Name: NVIDIA GeForce RTX 3050 Ti Laptop GPU ``` 通过以上方法可以在配备有 NVIDIA GeForce RTX 3050 Ti Laptop GPU 的设备上顺利搭建起适合深度学习应用需求的 CUDA 开发平台。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

君宝bob

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值