Linear algebra1---The geometry of linear equations

1.Introduction

采用mit linear algebra的线性代数课程结构,对线性代数进行复习和总结。

2.线性方程的图像表达

{ 2 x − y = 0 − x + 2 y = 3 (2.1) \left\{ \begin{aligned} 2x - y & = & 0 \\ -x + 2y & = & 3 \\ \end{aligned} \right. \tag{2.1} {2xyx+2y==03(2.1)

2.1row space

(x,y)可以看成是直线1:2x-y=0;直线2:-x+2y=3的交点

2.2column space

从向量的角度出发,向量1 (2, -1) 和向量2 (-1, 2)通过线性组合,叠加处了(0,3)

2.3延伸

row space 本质是求交点,只有方程有解了才能知道交点在那,作用有限。
column space 的思想是用基向量取表示column space中的一个特殊向量,
如果把基向量写成矩阵形式:
[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] (2.2) \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \tag{2.2} [2112][xy]=[03](2.2)
这也是线性代数第一部分重点,
A x = b (2.3) Ax=b \tag{2.3} Ax=b(2.3)

2.4思考

对于方程(2.3),有几个解?解是多少?

3.矩阵运算

3.1introduction

既然已经引入了矩阵,当然要总结一下矩阵背后的几何意义,根据几何意义取理解矩阵的常见运算。

3.2矩阵变换的几何意义

推荐观看3Blue1Brown的线性代数视频。向量 x ⃗ \vec{x} x 在坐标系中的坐标是由基底决定的,换言之,坐标系由基底决定。矩阵变换看成是对基底进行变换,然后再线性组合。
w ⃗ = x i ^ + y j ^ \vec{w}=x\hat{i}+y\hat{j} w =xi^+yj^
在这里插入图片描述

3.2.1 这种变换是线性变换

方程(2.2)是采取系数矩阵和变量相乘的形式,所以方程(2.2)是典型的线性方程。对应的矩阵变换也是线性变换。满足
{ T ( v 1 + v 2 ) = T ( v 1 ) + T ( v 2 ) T ( c v ) = c T ( v ) (3.1) \left\{ \begin{aligned} T(v1+v2) & = T(v1) + T(v2) & \\ T(cv) & = cT(v)& \\ \end{aligned} \right. \tag{3.1} {T(v1+v2)T(cv)=T(v1)+T(v2)=cT(v)(3.1)
这种特点在几何上,则是 T ( 0 ⃗ ) 还 是 0 ⃗ T(\vec{0})还是\vec{0} T(0 )0 ,原坐标系上的直线变换后也还是直线(直线上的点投影后还是均匀分布)

3.3 计算

3.3.1 Ax=b

  • matrix(A) * column(v) = column(w)
    从矩阵变换的几何意义,x是向量v在变换后坐标系 ( i ^ , j ^ ) (\hat{i}, \hat{j}) (i^,j^)中的坐标,b则是其在变换前坐标系(i, j)中的坐标。
    w 中 的 e l e m e n t 是 如 何 计 算 得 到 的 ? \color{red}{w中的element是如何计算得到的?} welement
    观察方程(2.2), w i = A r o w i ∗ v w_i=Arowi*v wi=Arowiv
  • row(v) * matrix(A) = row(w)
    和上一例相似,也可以看成是 w = v 1 ∗ a r o w 1 + v 2 ∗ a r o w 2 + . . . + v n ∗ a r o w n w=v_1*a_{row1}+v_2*a_{row2}+...+v_n*a_{rown} w=v1arow1+v2arow2+...+vnarown

3.3.2 AB=C

可以看成B={b1, b2, …, bn}, AB=A{b1, b2, … , bn}={c1, c2, …, cn}=C.
将B看成是向量的叠加,矩阵相乘中的每个变量都可以求得了。

3.3.3 α A \alpha A αA

对于向量 α v ⃗ \alpha\vec{v} αv ,可以看成向量中的每个元素都乘以 α \alpha α,矩阵可以看成是向量的叠加,所以也是所有变量都要乘以 α \alpha α

3.3.4 运算注意事项

矩阵乘法没有交换律,因为矩阵变换是对基向量的操作,所以变换顺序,改变很大;
矩阵乘法有结合律,AB=C,先进行B变换再进行A变换和直接C变换的效果是等同的。

Reference

[1] https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
[2] https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《线性代数引论》是由Gilbert Strang编写的一本经典教材,是大多数线性代数课程的标准教材。该书从向量、矩阵和行列式的基础知识入手,涵盖了线性方程组、向量空间、线性变换、特征值以及矩阵分解和应用等内容。 在这本教材中,Strang强调了线性代数对于科学、工程、计算机科学和经济学等领域的重要性及其实际应用价值。他还提出了一些直观的方法和技巧,以帮助读者更好地理解线性代数的概念和应用。 此外,该书还包含了大量的例子和练习,以帮助读者更好地巩固所学知识。这些例子和练习涵盖了多个领域和应用,包括计算机图形学、信号处理和金融等。 总体而言,《线性代数引论》的第5版是一本优秀的线性代数教材,既适用于初学者,也适用于高级应用领域的专业学者。它提供了一种清晰、直观和深入的理解线性代数的方式,是现代科学和工程教育的经典参考书。 ### 回答2: 《线性代数导论》是一本由Gilbert Strang所著的教材,是关于线性代数基础概念与应用的全面介绍。 这本书第五版的最大特点,是它作者在保留传统线性代数教材的基础上,增加了部分对现代数学发展的最新见解。这使得这本书亦适合于进阶学习线性代数的读者的研究需求。 本书共计十二章,涉及的领域有:向量和矩阵、行列式、向量空间、线性变换、特征值与特征向量、正交性与证明、对称矩阵与二次型等多个方面。 书中对这些概念的介绍,始终保持着逐步深入、由浅入深的原则。作者使用矩阵的分块以及向量运算的独特方式,有助于读者更清晰、更简便地理解运用这些概念的具体方法。 《线性代数导论》提供了大量的练习题和解答,能够让读者逐渐熟悉概念的应用,掌握本书所讲述的知识。此外,书中还有一些关于基于线性代数的研究过程和发展的阅读材料,可以帮助读者更深入地理解和应用所学的知识。 总之,这本书对于希望系统地学习线性代数的读者而言,是一本非常值得推荐的经典教材。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值