1 Introduction
在第一部分,学习了判断集合是否是凸集,这个部分开始学习函数是否是凸函数。
2 凸函数
2.1 凸函数定义
以一维函数为例,下面这个图曲线上两点之间的线段始终在曲线函数的上方。
2.2 常见一维凸函数
- 一维凸函数
- 一维凹函数
2.3 常见高维凸函数
- 高维凸函数,
x
∈
R
n
x\in R^n
x∈Rn
高维affine function仍可以用集合的角度理解,从高维集合投影到一维集合上。
高维norms ∣ ∣ x ∣ ∣ p ||x||_p ∣∣x∣∣p是一个凸锥。 - 高维凸函数,
x
∈
R
m
×
n
x\in R^{m\times n}
x∈Rm×n
- 高维函数映射
f
(
x
+
t
v
)
→
g
(
t
)
f(x+tv) \to g(t)
f(x+tv)→g(t)
直线 x ⃗ + t v ⃗ \vec{x}+t\vec{v} x+tv是凸集,映射到t,g(t)是凸函数,f(x)是凸函数。
- extended-value extension
f
→
f
~
f \to \tilde{f}
f→f~
2.4 凸函数的判定
2.4.1 一阶判定
从几何上很容易理解,一阶判定。但是需要同时比较f(x)、f(y)和f’(x),某些条件下,并不容易比较。
2.4.2 二阶判定
二阶判定则只需要判断二阶倒数的特性,就可以判断是否是凸函数。
2.4.3 上境图
上境图的作用是将函数转换成集合,通过集合的判定方法来判断函数是否是凸函数。
2.5 保凸运算
- 非负加权求和
- 逐点最大和逐点上确界
逐点最大值,从上确界的角度非常容易理解。f(x,t)和g(x,t)的最大值,就是下图中的两个上确界集合的交集。
逐点上确界,从微积分的角度理解,将 y ∈ A y\in A y∈A切成一个个极微小的区域,每个区域都是凸集,最后合并之后,整体仍然是一个凸集。
- 复合函数
判断的方法,通过几何判断并不直观,采用二阶判断。
- 最小值
采用上镜图非常容易理解,f(x,y,t)组成的上界图是一个凸集。在每个x点,进行切割,找到最小值,组成的函数的上确界epi(g)仍然在之前的上确界的边缘上,所以仍然是凸集。
- 透视变换
从上镜图很容易理解,集合f(x,s),经过透视变换变成了f(s/t, s/t),根据集合的保凸性,f(s/t, s/t)仍然是凸集。
2.6 共轭函数
不管f(x)是否是凸函数,共轭函数一定是凸函数。
引用知乎 周游[2]的论述,通过共轭函数,得到f(x)的闭包。
问题在于如果是一个任意的y,并不能找到一个最大值xy-f(x),就是说共轭函数有其定义域。
- 典型函数的共轭函数
包络面只有这一条线, y ∈ { a } y \in \{a \} y∈{a}
包络面如下图, y ∈ ( − ∞ , 0 ) y \in (-\infty,0) y∈(−∞,0)
- 共轭函数的共轭函数
如果原函数f(x)是封闭的凸函数,那么f**=xy-(xy-f(x))=f(x)
如果f**,f(x)并不是凸函数,就能得到f(x)外包络的凸集
2.7 拟凸函数
2.7.1 拟凸函数的定义
定义
S
α
S_{\alpha}
Sα关于x定义域中的子集。
S
α
和
S
β
S_{\alpha}和S_{\beta}
Sα和Sβ的集合如下图所示。
从另一角度来看,
拟
凸
函
数
规
定
了
在
定
义
域
内
,
只
存
在
一
个
极
值
,
不
存
在
马
鞍
形
的
存
在
\color{red}{拟凸函数规定了在定义域内,只存在一个极值,不存在马鞍形的存在}
拟凸函数规定了在定义域内,只存在一个极值,不存在马鞍形的存在。
2.7.2 拟凹函数
quasiconcave, -f 如果是quasiconvex,根据[3],拟凹函数的定义如下,
第一种定义:采用大于
α
\alpha
α的区间
第二种定义,更加直觉,在
2.7.3 拟线性函数
quasilinear, 如果函数f(x)在某个区间内是单调的,则满足即使拟凸的、也是拟凹的
example:
用等高线表示
f
(
x
1
,
x
2
)
f(x_1,x_2)
f(x1,x2),当
f
(
x
1
,
x
2
)
>
α
f(x_1,x_2)>\alpha
f(x1,x2)>αx
2.7.4 拟凸函数的等价定义/判定
-
jensen 不等式
-
一阶条件
因为f(x)是拟凸函数意味着定义域是凸集,当然可微的。对于f(x)是凸函数,函数本身对应的上境图是凸集,两者在纬度上相差1。
-
二阶条件
类比于 x ∈ R x \in R x∈R的情况,参考[4]
2.7.5 拟凸函数的保凸运算
对于拟凸函数,仍然倾向于从上境图的角度去考虑,对于上境图构成的集合,只有一个谷底,投影在定义域上是凸集。
这也意味着,如果如果函数图像不变,解集变化是保凸的,则新函数仍然是拟凸函数。
第
一
类
:
函
数
改
变
了
,
定
义
域
不
变
\color{red}{第一类:函数改变了,定义域不变}
第一类:函数改变了,定义域不变
- 非负加权最大值
f 1 , . . . , f m 是 拟 凸 函 数 , 则 f 是 拟 凸 函 数 f_1,..., f_m是拟凸函数,则f是拟凸函数 f1,...,fm是拟凸函数,则f是拟凸函数
- 逐点最大和逐点上确界
和凸函数同理
第 二 类 : 函 数 不 变 , 定 义 域 发 生 保 凸 变 换 \color{red}{第二类:函数不变,定义域发生保凸变换} 第二类:函数不变,定义域发生保凸变换 - 复合函数
从几何直觉来看,以C为分解点,h(f(x))仍然要先经历一个单调下降,然后再单调上升的过程,所以仍然是拟凸函数。
g(x) =f(Ax + B),如果f(x)是拟凸函数,则g(x)是拟凸函数。
Ax+B是降维处理,仍然是拟凸的。
线性分式 g ( x ) = f ( A x + B C T x + d ) g(x)=f(\frac{Ax+B}{C^Tx+d}) g(x)=f(CTx+dAx+B),如果f(x)是拟凸函数,g(x)是拟凸函数。 - 最小值
从几何直觉上容易理解。
2.8 对数凸函数和对数凹函数
作用处理幂函数相关的问题,例如概率分布这类的。
2.8.1 典型的对数凸函数
- 功率谱
x
α
x^{\alpha}
xα
经过log处理后,指数函数变成线性函数,是凸函数。 - 概率密度函数
经过log处理后,高斯函数变成了2次函数,也是凸函数。
2.8.2 对数凸函数的性质
参考[5], f(x)=log(x)是单调递增的凹函数,根据凸函数复合性质,
- 二阶倒数
对 l o g f ( x ) logf(x) logf(x)求二阶导数,得到下面公式
g ( x ) = l o g f ( x ) g(x)=logf(x) g(x)=logf(x)是凸函数,当下面的条件成立
- 复合函数性质
如果f(x)是凹函数,则g(x)=log(f(x))也是凹函数。
对于g(x)=logf(x), 则f(x)=expG(x)。 f ′ ′ ( x ) = G ′ ′ ( x ) e x p G ( x ) + G ′ 2 ( x ) e x p G ( x ) f''(x)=G''(x)expG(x)+G'^2(x)expG(x) f′′(x)=G′′(x)expG(x)+G′2(x)expG(x)
如果g(x)是凸函数,则f(x)也是凸函数,这意味着对数凸函数的原函数也是凸函数 - 线性化1: 对数凹函数之积,仍然是对数凹函数
两个凹函数f(x)、g(x), h ( x ) = l o g ( f ( x ) g ( x ) ) = l o g f ( x ) + l o g g ( x ) h(x)=log(f(x)g(x))=logf(x)+logg(x) h(x)=log(f(x)g(x))=logf(x)+logg(x),h(x)仍然是凹函数。 - 线性化2:对数凸函数之和,仍然是对数凸函数
对于积分 g ( x ) = l o g ( f + g ) = l o g ( e x p F + e x p G ) g(x)=log(f+g)=log(expF+expG) g(x)=log(f+g)=log(expF+expG),并且 F ( x ) = l o g f ( x ) , G = l o g g ( x ) F(x)=logf(x), G=logg(x) F(x)=logf(x),G=logg(x)是凸函数。
通过求导容易得到g’’(x)>0,意味着,对数凸函数之和仍然是对数凸函数。
下面这个对数凸函数在区域C上的积分,可以看成是一个个凸函数之和,所以g(x)的对数是凸函数。
- 线性化3: 对数凹函数积分,仍然是对数凹函数
进行推广,如果f(x)、g(x)是对数凹函数,卷积仍然是对数凹函数
2.9 凸函数问题的几何分析
对于定义域时凸集,函数是凸函数,或者是拟凸函数,从几何的角度,直观分析这类问题,采用二维坐标分析,函数的数值采用等高线表示。
Rerences
[1] https://web.stanford.edu/class/ee364a/
[2] https://www.zhihu.com/search?type=content&q=%E5%85%B1%E8%BD%AD%E5%87%BD%E6%95%B0%20%20%E5%87%B8
[3] https://math.stackexchange.com/questions/2500035/whats-the-difference-between-quasi-concavity-and-concavity
[4] https://zhuanlan.zhihu.com/p/131604034
[5] https://zhuanlan.zhihu.com/p/132627576