Convex optimization 2 --- convex function

8 篇文章 1 订阅

1 Introduction

在第一部分,学习了判断集合是否是凸集,这个部分开始学习函数是否是凸函数。

2 凸函数

2.1 凸函数定义

在这里插入图片描述
以一维函数为例,下面这个图曲线上两点之间的线段始终在曲线函数的上方。
在这里插入图片描述

2.2 常见一维凸函数

  • 一维凸函数
    在这里插入图片描述
  • 一维凹函数
    在这里插入图片描述

2.3 常见高维凸函数

  • 高维凸函数, x ∈ R n x\in R^n xRn
    在这里插入图片描述
    高维affine function仍可以用集合的角度理解,从高维集合投影到一维集合上。
    在这里插入图片描述
    高维norms ∣ ∣ x ∣ ∣ p ||x||_p xp是一个凸锥。
  • 高维凸函数, x ∈ R m × n x\in R^{m\times n} xRm×n
    在这里插入图片描述
    在这里插入图片描述
  • 高维函数映射 f ( x + t v ) → g ( t ) f(x+tv) \to g(t) f(x+tv)g(t)
    在这里插入图片描述
    直线 x ⃗ + t v ⃗ \vec{x}+t\vec{v} x +tv 是凸集,映射到t,g(t)是凸函数,f(x)是凸函数。
    在这里插入图片描述
  • extended-value extension f → f ~ f \to \tilde{f} ff~
    在这里插入图片描述

2.4 凸函数的判定

2.4.1 一阶判定

从几何上很容易理解,一阶判定。但是需要同时比较f(x)、f(y)和f’(x),某些条件下,并不容易比较。
在这里插入图片描述
在这里插入图片描述

2.4.2 二阶判定

二阶判定则只需要判断二阶倒数的特性,就可以判断是否是凸函数。
在这里插入图片描述

2.4.3 上境图

在这里插入图片描述
上境图的作用是将函数转换成集合,通过集合的判定方法来判断函数是否是凸函数。
在这里插入图片描述

2.5 保凸运算

  • 非负加权求和
    在这里插入图片描述
  • 逐点最大和逐点上确界
    逐点最大值,从上确界的角度非常容易理解。f(x,t)和g(x,t)的最大值,就是下图中的两个上确界集合的交集。
    在这里插入图片描述
    逐点上确界,从微积分的角度理解,将 y ∈ A y\in A yA切成一个个极微小的区域,每个区域都是凸集,最后合并之后,整体仍然是一个凸集。
    在这里插入图片描述
  • 复合函数
    在这里插入图片描述
    判断的方法,通过几何判断并不直观,采用二阶判断。
    在这里插入图片描述
    在这里插入图片描述
  • 最小值
    采用上镜图非常容易理解,f(x,y,t)组成的上界图是一个凸集。在每个x点,进行切割,找到最小值,组成的函数的上确界epi(g)仍然在之前的上确界的边缘上,所以仍然是凸集。
    在这里插入图片描述
  • 透视变换
    在这里插入图片描述
    从上镜图很容易理解,集合f(x,s),经过透视变换变成了f(s/t, s/t),根据集合的保凸性,f(s/t, s/t)仍然是凸集。
    在这里插入图片描述

2.6 共轭函数

不管f(x)是否是凸函数,共轭函数一定是凸函数。
在这里插入图片描述
在这里插入图片描述
引用知乎 周游[2]的论述,通过共轭函数,得到f(x)的闭包。
在这里插入图片描述
问题在于如果是一个任意的y,并不能找到一个最大值xy-f(x),就是说共轭函数有其定义域。

  • 典型函数的共轭函数
    包络面只有这一条线, y ∈ { a } y \in \{a \} y{a}
    在这里插入图片描述
    包络面如下图, y ∈ ( − ∞ , 0 ) y \in (-\infty,0) y(,0)
    在这里插入图片描述
  • 共轭函数的共轭函数
    如果原函数f(x)是封闭的凸函数,那么f**=xy-(xy-f(x))=f(x)
    如果f**,f(x)并不是凸函数,就能得到f(x)外包络的凸集
    在这里插入图片描述

2.7 拟凸函数

2.7.1 拟凸函数的定义

定义 S α S_{\alpha} Sα关于x定义域中的子集。
在这里插入图片描述
S α 和 S β S_{\alpha}和S_{\beta} SαSβ的集合如下图所示。
在这里插入图片描述
从另一角度来看, 拟 凸 函 数 规 定 了 在 定 义 域 内 , 只 存 在 一 个 极 值 , 不 存 在 马 鞍 形 的 存 在 \color{red}{拟凸函数规定了在定义域内,只存在一个极值,不存在马鞍形的存在}
在这里插入图片描述
在这里插入图片描述

2.7.2 拟凹函数

quasiconcave, -f 如果是quasiconvex,根据[3],拟凹函数的定义如下,
第一种定义:采用大于 α \alpha α的区间
在这里插入图片描述
第二种定义,更加直觉,在
在这里插入图片描述
在这里插入图片描述

2.7.3 拟线性函数

quasilinear, 如果函数f(x)在某个区间内是单调的,则满足即使拟凸的、也是拟凹的
在这里插入图片描述
example:
在这里插入图片描述
用等高线表示 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2),当 f ( x 1 , x 2 ) > α f(x_1,x_2)>\alpha f(x1,x2)>αx
在这里插入图片描述

2.7.4 拟凸函数的等价定义/判定

  • jensen 不等式
    在这里插入图片描述
    在这里插入图片描述

  • 一阶条件
    因为f(x)是拟凸函数意味着定义域是凸集,当然可微的。对于f(x)是凸函数,函数本身对应的上境图是凸集,两者在纬度上相差1。
    在这里插入图片描述

  • 二阶条件
    类比于 x ∈ R x \in R xR的情况,参考[4]
    在这里插入图片描述

2.7.5 拟凸函数的保凸运算

对于拟凸函数,仍然倾向于从上境图的角度去考虑,对于上境图构成的集合,只有一个谷底,投影在定义域上是凸集。
这也意味着,如果如果函数图像不变,解集变化是保凸的,则新函数仍然是拟凸函数。
第 一 类 : 函 数 改 变 了 , 定 义 域 不 变 \color{red}{第一类:函数改变了,定义域不变}

  • 非负加权最大值
    f 1 , . . . , f m 是 拟 凸 函 数 , 则 f 是 拟 凸 函 数 f_1,..., f_m是拟凸函数,则f是拟凸函数 f1,...,fmf
    在这里插入图片描述
    在这里插入图片描述
  • 逐点最大和逐点上确界
    在这里插入图片描述
    和凸函数同理
    第 二 类 : 函 数 不 变 , 定 义 域 发 生 保 凸 变 换 \color{red}{第二类:函数不变,定义域发生保凸变换}
  • 复合函数
    在这里插入图片描述
    从几何直觉来看,以C为分解点,h(f(x))仍然要先经历一个单调下降,然后再单调上升的过程,所以仍然是拟凸函数。
    在这里插入图片描述
    g(x) =f(Ax + B),如果f(x)是拟凸函数,则g(x)是拟凸函数。
    Ax+B是降维处理,仍然是拟凸的。
    在这里插入图片描述
    线性分式 g ( x ) = f ( A x + B C T x + d ) g(x)=f(\frac{Ax+B}{C^Tx+d}) g(x)=f(CTx+dAx+B),如果f(x)是拟凸函数,g(x)是拟凸函数。
  • 最小值
    从几何直觉上容易理解。
    在这里插入图片描述

2.8 对数凸函数和对数凹函数

作用处理幂函数相关的问题,例如概率分布这类的。
在这里插入图片描述

2.8.1 典型的对数凸函数

  • 功率谱 x α x^{\alpha} xα
    在这里插入图片描述
    经过log处理后,指数函数变成线性函数,是凸函数。
  • 概率密度函数
    在这里插入图片描述
    经过log处理后,高斯函数变成了2次函数,也是凸函数。

2.8.2 对数凸函数的性质

参考[5], f(x)=log(x)是单调递增的凹函数,根据凸函数复合性质,

  • 二阶倒数
    l o g f ( x ) logf(x) logf(x)求二阶导数,得到下面公式
    在这里插入图片描述
    g ( x ) = l o g f ( x ) g(x)=logf(x) g(x)=logf(x)是凸函数,当下面的条件成立
    在这里插入图片描述
  • 复合函数性质
    如果f(x)是凹函数,则g(x)=log(f(x))也是凹函数。
    对于g(x)=logf(x), 则f(x)=expG(x)。 f ′ ′ ( x ) = G ′ ′ ( x ) e x p G ( x ) + G ′ 2 ( x ) e x p G ( x ) f''(x)=G''(x)expG(x)+G'^2(x)expG(x) f(x)=G(x)expG(x)+G2(x)expG(x)
    如果g(x)是凸函数,则f(x)也是凸函数,这意味着对数凸函数的原函数也是凸函数
  • 线性化1: 对数凹函数之积,仍然是对数凹函数
    两个凹函数f(x)、g(x), h ( x ) = l o g ( f ( x ) g ( x ) ) = l o g f ( x ) + l o g g ( x ) h(x)=log(f(x)g(x))=logf(x)+logg(x) h(x)=log(f(x)g(x))=logf(x)+logg(x),h(x)仍然是凹函数。
  • 线性化2:对数凸函数之和,仍然是对数凸函数
    对于积分 g ( x ) = l o g ( f + g ) = l o g ( e x p F + e x p G ) g(x)=log(f+g)=log(expF+expG) g(x)=log(f+g)=log(expF+expG),并且 F ( x ) = l o g f ( x ) , G = l o g g ( x ) F(x)=logf(x), G=logg(x) F(x)=logf(x),G=logg(x)是凸函数。
    通过求导容易得到g’’(x)>0,意味着,对数凸函数之和仍然是对数凸函数。
    下面这个对数凸函数在区域C上的积分,可以看成是一个个凸函数之和,所以g(x)的对数是凸函数。
    在这里插入图片描述
  • 线性化3: 对数凹函数积分,仍然是对数凹函数
    在这里插入图片描述
    进行推广,如果f(x)、g(x)是对数凹函数,卷积仍然是对数凹函数
    在这里插入图片描述

2.9 凸函数问题的几何分析

对于定义域时凸集,函数是凸函数,或者是拟凸函数,从几何的角度,直观分析这类问题,采用二维坐标分析,函数的数值采用等高线表示。
在这里插入图片描述

Rerences

[1] https://web.stanford.edu/class/ee364a/
[2] https://www.zhihu.com/search?type=content&q=%E5%85%B1%E8%BD%AD%E5%87%BD%E6%95%B0%20%20%E5%87%B8
[3] https://math.stackexchange.com/questions/2500035/whats-the-difference-between-quasi-concavity-and-concavity
[4] https://zhuanlan.zhihu.com/p/131604034
[5] https://zhuanlan.zhihu.com/p/132627576

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值