CHAP. 6 Laplace Transform

6.1 Laplace Transform

(Def)

Convert a funtion f ( t ) ⟶ F ( s ) f(t)\longrightarrow F(s) f(t)F(s)

L ( f ) = ∫ 0 ∞ e − s t f ( t ) d t L(f) = \int_{0}^{\infty} e^{-st}f(t) dt L(f)=0estf(t)dt

L − 1 ( F ( s ) ) = 1 2 π i lim ⁡ T → ∞ ∮ γ − i T γ + i T e s t F ( s ) d s L^{-1}(F(s)) = \frac{1}{2\pi i} \lim_{T\rightarrow \infty}\oint_{\gamma-iT}^{\gamma+iT} e^{st}F(s)ds L1(F(s))=2πi1TlimγiTγ+iTestF(s)ds

∫ 0 T e − s t sin ⁡ ( ω t ) d t = ∫ 0 T e − s t e i ω t − e − i ω t 2 i \int_{0}^{T}e^{-st}\sin(\omega t)dt = \int_{0}^Te^{-st}\frac{e^{i\omega t} - e^{-i\omega t}}{2i} 0Testsin(ωt)dt=0Test2ieiωteiωt

References

Formula Table

L ( t n ) = n ! s n + 1 L(t^n)= \frac{n!}{s^{n+1}} L(tn)=sn+1n!

L ( e a t ) = 1 s − a L(e^{at}) = \frac{1}{s-a} L(eat)=sa1

L ( f ( c t ) ) = 1 c F ( s c ) L(f(ct)) = \frac{1}{c}F(\frac{s}{c}) L(f(ct))=c1F(cs)

L ( sin ⁡ ( k t ) ) = k s 2 + k 2 L(\sin(kt)) = \frac{k}{s^2 + k^2} L(sin(kt))=s2+k2k

L ( cos ⁡ ( k t ) ) = s s 2 + k 2 L(\cos(kt)) = \frac{s}{s^2+k^2} L(cos(kt))=s2+k2s

L ( sinh ⁡ ( k t ) ) = k s 2 − k 2 sinh ⁡ ( t ) = e t − e − t 2 L(\sinh(kt)) = \frac{k}{s^2-k^2} \hspace{1cm} \sinh(t) = \frac{e^t - e^{-t}}{2} L(sinh(kt))=s2k2ksinh(t)=2etet

L ( cosh ⁡ ( k t ) ) = s s 2 − k 2 cosh ⁡ ( t ) = e t + e − t 2 L(\cosh(kt)) = \frac{s}{s^2-k^2} \hspace{1cm} \cosh(t) = \frac{e^t + e^{-t}}{2} L(cosh(kt))=s2k2scosh(t)=2et+et

L ( ∫ 0 t f ( τ ) d τ ) = 1 s L ( f ) L(\int_0^{t} f(\tau)d\tau)=\frac{1}{s}L(f) L(0tf(τ)dτ)=s1L(f)

L ( ∫ 0 t ∫ 0 τ f ( z ) d z ) = 1 s L ( ∫ 0 τ f ( z ) d z ) = 1 s 2 L ( f ( z ) ) L(\int_{0}^{t} \int_{0}^{\tau} f(z)dz) = \frac{1}{s} L(\int_{0}^{\tau} f(z)dz) = \frac{1}{s^2}L(f(z)) L(0t0τf(z)dz)=s1L(0τf(z)dz)=s21L(f(z))

. . . ... ...

L ( u ( t − a ) ) = 1 s e − a s L(u(t-a)) = \frac{1}{s}e^{-as} L(u(ta))=s1eas

L ( f ( t − a ) u ( t − a ) ) = e − a s L ( f ) L(f(t-a)u(t-a)) = e^{-as}L(f) L(f(ta)u(ta))=easL(f)

L ( δ ( t − a ) ) = e − a s L(\delta(t-a)) = e^{-as} L(δ(ta))=eas

L ( − t f ( t ) ) = d d s F ( s ) L(-tf(t)) = \frac{d}{ds}F(s) L(tf(t))=dsdF(s)

L ( t f ( t ) ) = − d d s F ( s ) L(tf(t)) = - \frac{d}{ds}F(s) L(tf(t))=dsdF(s)

L ( t n e t ) = n ! ( s − 1 ) n + 1 L(t^ne^t) = \frac{n!}{(s-1)^{n+1}} L(tnet)=(s1)n+1n!

Properties

  1. Linear property:
    L ( a f + b g ) = a L ( f ) + b L ( g ) L(af + bg) = aL(f) + bL(g) L(af+bg)=aL(f)+bL(g)

L ( e a t f ( t ) ) = F ( s − a ) L ( f ( t ) = F ( s ) ) \begin{aligned} L(e^{at} f(t)) &= F(s-a) \\ L(f(t) &= F(s)) \end{aligned} L(eatf(t))L(f(t)=F(sa)=F(s))

(Ex01) 常数方程

Solve L ( 1 ) L(1) L(1)

F ( s ) = L ( 1 ) = ∫ 0 ∞ e − s t d t = − 1 s e − s t ∣ 0 ∞ = 1 s ( s > 0 ) \begin{aligned} F(s)=L(1) &= \int_{0}^{\infty} e^{-st} dt\\ &= -\frac{1}{s}e^{-st}|_{0}^{\infty} \\ &= \frac{1}{s} \hspace{1cm} (s>0) \end{aligned} F(s)=L(1)=0estdt=s1est0=s1(s>0)

If s &lt; 0 s&lt;0 s<0, e − s t e^{-st} est will approach ∞ \infty , which means we can’t get any reasonable solutions.

(Ex02) 指数方程

Solve L ( e a t ) L(e^{at}) L(eat)

L ( e a t ) = ∫ 0 ∞ e − s t e a t d t = ∫ 0 ∞ e ( a − s ) t d t = 1 s − a e ( a − s ) t ∣ 0 ∞ = 1 a − s ( s &gt; a ) \begin{aligned} L(e^{at}) &amp;= \int_{0}^{\infty} e^{-st} e^{at} dt \\ &amp;= \int_{0}^{\infty} e^{(a-s)t} dt \\ &amp;= \frac{1}{s-a}e^{(a-s)t} |_{0}^{\infty} \\ &amp; = \frac{1}{a-s} \hspace{1cm} (s&gt;a) \end{aligned} L(eat)=0esteatdt=0e(as)tdt=sa1e(as)t0=as1(s>a)

(Ex03) 整数次多项式

Solve L ( t n ) L(t^n) L(tn)

L ( t n ) = ∫ t = 0 ∞ t n e − s t d t \begin{aligned} L(t^n) &amp;= \int_{t=0}^{\infty} t^n e^{-st} dt \end{aligned} L(tn)=t=0tnestdt

Let u = t n , v ′ = e − s t , v = − 1 s e − s t u = t^n,v&#x27;=e^{-st}, v=-\frac{1}{s}e^{-st} u=tn,v=est,v=s1est. According to ∫ t 1 t 2 u v ′ d t = u v ∣ t 1 t 2 − ∫ t 1 t 2 u ′ v d t \int_{t_1}^{t_2} uv&#x27;dt = uv|_{t_1}^{t_2} - \int_{t_1}^{t_2}u&#x27; v dt t1t2uvdt=uvt1t2t1t2uvdt

We have
L ( t n ) = − 1 s t n e − s t ∣ 0 ∞ − ∫ 0 ∞ − n s t n − 1 e − s t d t = n s L ( t n − 1 ) \begin{aligned} L(t^n) &amp;= -\frac{1}{s}t^ne^{-st}|_{0}^{\infty} - \int_{0}^{\infty}-\frac{n}{s}t^{n-1}e^{-st}dt\\ &amp;= \frac{n}{s}L(t^{n-1}) \end{aligned}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值