拉普拉斯变换(Fourie.Plus+):通过引入衰减因子,让原函数图像在某种程度上“掰弯”,从而实现等幅震荡并满足傅里叶变换的计算要求

在这里插入图片描述
在这里插入图片描述

在处理一些在震荡同时幅度变得越来越大甚至趋于无限大的函数时,拉普拉斯变换通过引入衰减因子,使原函数的图像在某种程度上“掰弯”,从而实现等幅震荡,这样就能够满足傅里叶变换的计算要求。

拉普拉斯变换中的变量 s 实际上是引入衰减因子后的复数形式。傅里叶变换主要处理的是周期性函数,而拉普拉斯变换则适用于更广泛的情况,包括非周期性和增长型函数。

具体来说,拉普拉斯变换定义为:
L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} f(t)e^{-st} dt L{f(t)}=F(s)=0f(t)estdt
其中, s = σ + j ω s = \sigma + j\omega s=σ+是复数【Tips:同,高中记的( a + bi ) ,i 和 j 在数学和电学上都表示虚数单位(电气工程和物理学中,虚数单位通常表示为 j,以避免与电流表示的字母 i 混淆)】。

相比之下,傅里叶变换的定义为:
F { f ( t ) } = F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t \mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt F{f(t)}=F(ω)=f(t)etdt

通过引入衰减因子 e − σ t e^{-\sigma t} eσt,拉普拉斯变换可以处理那些傅里叶变换无法直接处理的函数。

附:收敛域(Region of Convergence, ROC)
是非常重要的一个概念。收敛域是指在复平面上拉普拉斯变换积分收敛的区域。具体来说,收敛域是使得积分
∫ 0 ∞ f ( t ) e − s t d t \int_{0}^{\infty} f(t)e^{-st} dt 0f(t)estdt
收敛的所有复数 s 的集合。

为了更好地理解这一点,我们可以考虑一个具体的例子。

假设有一个函数 f ( t ) = e a t u ( t ) f(t) = e^{at}u(t) f(t)=eatu(t),其中 u ( t ) u(t) u(t)是单位阶跃函数。

对这个函数进行拉普拉斯变换:
L { e a t u ( t ) } = ∫ 0 ∞ e a t e − s t d t = ∫ 0 ∞ e ( a − s ) t d t \mathcal{L}\{e^{at}u(t)\} = \int_{0}^{\infty} e^{at}e^{-st} dt = \int_{0}^{\infty} e^{(a-s)t} dt L{eatu(t)}=0eatestdt=0e(as)tdt

为了使这个积分收敛,需要满足 Re ⁡ ( a − s ) < 0 \operatorname{Re}(a-s) < 0 Re(as)<0,也就是 Re ⁡ ( s ) > a \operatorname{Re}(s) > a Re(s)>a

因此,对于函数 e a t u ( t ) e^{at}u(t) eatu(t),其拉普拉斯变换的收敛域是 Re ⁡ ( s ) > a \operatorname{Re}(s) > a Re(s)>a

总结来说,收敛域是拉普拉斯变换中非常关键的一部分,它决定了拉普拉斯变换存在的条件。不同的函数会有不同的收敛域,需要根据具体的函数形式进行分析。

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值