从零开始之4.2,基于AutoDL服务器(单卡),通过vllm发布Lora微调模型的API服务,在本地进行调用

说在前面

  • 纯小白一个,边学边做,记录学习过程,不专业之处请见谅或能指出感激不尽。

  • 这篇是我自己的尝试,咱们学习这个肯定不限于部署一个官方模型,于是乎我就想通过vllm把训练过的模型发布出去,没想到还成功了,只是通过命令执行的方式发布后仅支持语言模型了

  • 这篇的操作就没有4.1的详细了只写了关键步骤。

如果具备以下条件,就可以达成标题的目标了:

 https://blog.csdn.net/weixin_43490757/article/details/147482203?fromshare=blogdetail&sharetype=blogdetail&sharerId=147482203&sharerefer=PC&sharesource=weixin_43490757&sharefrom=from_link 

  • AutoDL的服务器费用:5元以内。

  • 半天时间(其实蛮简单的,只是找bug花了些时间)

————————————————

启动vllm(单卡,带lora权重)

直接指定lora模型路径先试一下能否启动

vllm serve Qwen2.5-VL-7B-Instruct --dtype auto --port 6006 --limit_mm_per_prompt image=4 --max_model_len 8784 --gpu_memory_utilization 0.8 --enable-lora --lora-modules lora1=/root/autodl-tmp/Qwen/Qwen2.5-VL/output/Qwen2_5-VL-7B/checkpoint-183

这里直接执行会报错:ValueError: Call to add_lora method failed: LoRA rank 64 is greater than max_lora_rank 16.

意思是: 我执行的这个LoRA 配置使用一个 rank 为 64 的适配器,但系统中配置的最大 LoRA rank 限制为 16

修改lora_rank重新训练

于是我修改了tran.py这个训练脚本,如下图所示

    

如下图所示,执行训练脚本

python tran.py

  

再次启动vllm(单卡,带lora权重)

再次执行vllm启动命令

vllm serve Qwen2.5-VL-7B-Instruct --dtype auto --port 6006 --limit_mm_per_prompt image=4 --max_model_len 8784 --gpu_memory_utilization 0.8 --enable-lora --lora-modules lora1=/root/autodl-tmp/Qwen/Qwen2.5-VL/output/Qwen2_5-VL-7B/checkpoint-183

如下图所示,一堆警告,不过最后还是执行成功了。

建立隧道连接

参考如下命令,获取实际的 远程主机的用户名和地址和 指定端口号 ,在自己电脑上的命令行界面执行

ssh -CNg -L 8000:127.0.0.1:6006 #远程主机的用户名和地址# -p #指定端口号#  #该命令通过 SSH 建立一个隧道连接,将本地 8000 端口的请求转发到远程服务器的 6006 端口,例:ssh -CNg -L 8000:127

本地调用lora模型

调用下试试,还是可以调用成功的,只不过lora模型调用的结果看起来更简洁。

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值