以下为 OpenVLA 中各主要文件及目录的详细解析,快速定位关键模块和理解其原理与实现。
在机器学习和深度学习的项目中,训练和验证脚本是核心组成部分,用于构建、训练和评估模型。以下是一个典型的训练及验证脚本的详细流程:
项目结构
首先,需要导入项目所需的库和模块。这些通常包括数据处理、模型构建、优化器、损失函数以及可视化工具等。
openvla/
├── datasets/
│ └── openx_dataset.py
├── experiments/
│ ├── robot/
│ │ ├── bridge/
│ │ │ └── run_bridgev2_eval.py
│ │ └── libero/
│ │ └── run_libero_eval.py
│ └── …
├── openvla/ # 核心模型与推理训练代码
│ ├── model/
│ │ ├── openvla_model.py # 多模态 Transformer 主体定义
│ │ ├── components.py # 视觉编码器、投影层等模块实现
│ │ └── __init__.py
│ ├── policy/
│ │ ├── inference.py
│ │ ├── train.py # 训练主循环与优化配置
│ │ └── utils.py # 损失、数据加载等工具函数
│ └── utils/ # 通用工具(日志、配置解析等)
│ ├── logger.py
│ └── config.py
├── scripts