RRT算法与 Informed RRT算法详解及应用
一、引言
路径规划是机器人学、自动驾驶等领域中的关键问题之一。快速搜索随机树(Rapidly-exploring Random Tree,RRT)及其变体算法,如 RRT和 Informed RRT,在解决复杂环境下的路径规划问题上表现出了强大的能力。本文将详细介绍 RRT算法和 Informed RRT算法的原理、实现以及应用。
二、RRT * 算法概述
RRT * 算法是对基本 RRT 算法的改进,旨在找到一条从起始点到目标点的最优路径。其核心思想是通过随机采样和逐步扩展树的方式来探索状态空间,同时在扩展过程中进行局部优化,以逐步接近最优路径。
基本原理
1、初始化:从起始点创建一个树结构,将起始点作为树的根节点。
2、 随机采样:在状态空间中随机生成一个采样点。
3、找到最近节点:在树中找到距离采样点最近的节点。
4、扩展树:从最近节点向采样点方向扩展一定距离,得到一个新的节点。
5、检查新节点:判断新节点是否在安全区域内且不与障碍物碰撞。如果是,则将新节点加入树中。
6、局部优化:对于新加入的节点,检查其附近的节点,看是否可以通过新节点到达这些节点的代价更小。如果是,则更新这些节点的父节点和代价。
7、重复步骤 2-6,直到找到目标点或达到最大迭代次数。
算法优势
1、能够处理高维空间的路径规划问题。
2、具有概率完备性,即只要存在可行路径,在足够的时间内一定能找到。
3、通过局部优化,逐步接近最优路径。
三、Informed RRT * 算法详解
Informed RRT是在 RRT算法的基础上进行改进,引入了信息引导机制,以提高算法的效率和收敛速度。
算法原理
1、初始化与 RRT * 相同,建立起始点的树结构、记录父节点和代价。
2、随机采样改进:
- 大部分情况下,在状态空间中随机采样,与 RRT * 相同。
- 有 10% 的概率从历史路径进行引导采样。如果存在历史路径(HISTORICAL_PATHS不为空),随机选择一条历史路径,再从该路径中随机选择一个节点。然后在这个节点附近通过添加一定范围内的随机扰动生成新的采样点,确保采样点在合法的空间范围内。
3、后续步骤与 RRT * 类似: - 判断采样点是否在安全区域,若不在则继续下一次采样。
- 找到树中距离采样点最近的节点。
- 计算方向向量、归一化并扩展得到新节点。
- 确保新节点在安全区域且连接新节点和最近节点的线段不与障碍物碰撞,若满足条件则将新节点加入树中,更新父节点和代价。
- 对树中的节点进行局部优化,检查新节点是否能优化其他节点的路径。
- 如果新节点距离目标点足够近,则重构路径并返回。
代码分析
import numpy as np
import random
def informed_rrt_star(start, goal, obstacles):
tree = [start]
parent = {tuple(start): None}
cost = {tuple(start): 0}
path = []
for _ in range(MAX_ITER):
# 随机采样点
rand_point = [random.randint(BOX_X, BOX_X + BOX_WIDTH), random.randint(BOX_Y, BOX_Y + BOX_HEIGHT)]
# 10% 概率从历史路径进行引导采样
if HISTORICAL_PATHS and random.random() < 0.1:
chosen_path = random.choice(HISTORICAL_PATHS)
chosen_node = random.choice(chosen_path)
# 在历史节点附近产生采样点(可根据需要调参)
perturb_x = random.randint(-50, 50)
perturb_y = random.randint(-50, 50)
rand_point = [min(max(chosen_node[0] + perturb_x, BOX_X), BOX_X + BOX_WIDTH),
min(max(chosen_node[1] + perturb_y, BOX_Y), BOX_Y + BOX_HEIGHT)]
if not is_in_safe_area(rand_point):
continue
nearest_point = min(tree, key=lambda p: distance(p, rand_point))
direction = np.array(rand_point) - np.array(nearest_point)
norm = np.linalg.norm(direction)
direction = direction / norm if norm!= 0 else direction
new_point = nearest_point + direction * STEP_SIZE
new_point = np.clip(new_point, [BOX_X, BOX_Y], [BOX_X + BOX_WIDTH, BOX_Y + BOX_HEIGHT])
if is_in_safe_area(new_point) and not is_segment_in_obstacle(nearest_point, new_point):
tree.append(new_point)
parent[tuple(new_point)] = nearest_point
cost[tuple(new_point)] = cost[tuple(nearest_point)] + distance(nearest_point, new_point)
for node in tree:
if distance(new_point, node) < STEP_SIZE and cost[tuple(new_point)] + distance(new_point, node) < cost[tuple(node)]:
parent[tuple(node)] = new_point
cost[tuple(node)] = cost[tuple(new_point)] + distance(new_point, node)
if distance(new_point, goal) < STEP_SIZE:
# 重构路径
while new_point is not None:
path.append(new_point)
new_point = parent.get(tuple(new_point), None)
return path[::-1]
return None
在这段代码中,首先初始化了树、父节点和代价的字典。然后在每次迭代中进行随机采样,根据一定概率从历史路径引导采样。接着找到最近节点,扩展得到新节点并进行合法性检查,最后进行局部优化和目标点判断。
四、算法优势
1、引入历史路径引导采样,提高了采样的效率,减少了盲目搜索。
2、在复杂环境下,能够更快地收敛到最优路径。
五、应用场景
1、**机器人路径规划:**在工业机器人、服务机器人等领域,用于规划机器人在复杂环境中的运动路径,避免与障碍物碰撞。
2、**自动驾驶:**帮助自动驾驶汽车在道路上规划安全、高效的行驶路径。
3、**游戏开发:**用于游戏中角色的自动寻路,提高游戏的真实感和可玩性。
六、总结
RRT和 Informed RRT算法是解决路径规划问题的有效方法。RRT通过局部优化逐步接近最优路径,具有概率完备性。Informed RRT在 RRT * 的基础上引入信息引导机制,进一步提高了算法的效率和收敛速度。这两种算法在机器人学、自动驾驶等领域有着广泛的应用前景。
在实际应用中,可以根据具体的问题场景和需求选择合适的算法,并对算法进行适当的调整和优化,以获得更好的性能。同时,随着技术的不断发展,未来还可以进一步研究和改进这些算法,以适应更加复杂和多样化的路径规划需求。