研一学的凸优化,现在忘得都差不多了,看了几篇CSDN博客,仿佛回想起来不少,因此从基础开始简单记录一下。
一、梯度下降算法
1.梯度的直观理解
链接:浅谈对梯度下降法的理解
2. 从泰勒公式到梯度下降的原理推导
二、拉格朗日乘子法
链接:拉格朗日乘子法
三、增广拉格朗日函数法
链接:增广拉格朗日函数法
四、ADMM算法
链接:ADMM算法理论与应用
链接:ADMM讲解
另附:对偶问题无解,则原问题无解或无界
研一学的凸优化,现在忘得都差不多了,看了几篇CSDN博客,仿佛回想起来不少,因此从基础开始简单记录一下。
链接:浅谈对梯度下降法的理解
链接:拉格朗日乘子法
链接:增广拉格朗日函数法
链接:ADMM算法理论与应用
链接:ADMM讲解
另附:对偶问题无解,则原问题无解或无界