从梯度下降到ADMM-学习记录

研一学的凸优化,现在忘得都差不多了,看了几篇CSDN博客,仿佛回想起来不少,因此从基础开始简单记录一下。

一、梯度下降算法

1.梯度的直观理解

链接:浅谈对梯度下降法的理解

2. 从泰勒公式到梯度下降的原理推导

链接:为什么局部下降最快的方向就是梯度的负方向?

二、拉格朗日乘子法

链接:拉格朗日乘子法

三、增广拉格朗日函数法

链接:增广拉格朗日函数法

四、ADMM算法

链接:ADMM算法理论与应用
链接:ADMM讲解




另附:对偶问题无解,则原问题无解或无界
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值