集合与点集1


前言

这是我自己学习实变函数写的摘要笔记,详细学习还得看书。
《实变函数论》周民强 北京大学出版社 第三版

第一章 集合与点集1

1.1集合与子集合

集合

注意:属于 ∈ \in ,不属于 ∉ \notin /的记号(不属于在属于上加一横 ∈ ‾ \overline{\in}

子集合

定义:若 x ∈ A x\in A xA,必有 x ∈ B x\in B xB,则称A是B的子集合

集合族/集合列

定义:设 I I I是给定的一个集合,对于每一个 α ∈ I α\in I αI,对应一个集合 A α A_α Aα ,这样我们就得到许多集合,它们的总体成为集合族,记为 { A a ∣ a ∈ I } \{ A_a\mid a\in I\} {AaaI} { A a ∣ a ∈ I } \{A_a\mid a \in I\} {AaaI}

注意:当 I = N I=N I=N 时,集合族也称为集合列,记为 A k 或 A i A_k或A_i AkAi

1.2集合的运算

并与交

并,交的定义

交换律、结合律、分配律

多个集合的并集与交集,利用集合族来定义:P5

差与补

差集、补集的定义

A \ B A\backslash B A\B,读作A减B

De.Morgan律

对称差集: A ∖ B = ( A ∖ B ) ∪ ( B ∖ A ) A\setminus B=(A\setminus B)\cup (B\setminus A) AB=(AB)(BA),记号为∆

集合列的极限

递减/递增集合列

定义:设 { A k } \{A_k\} {Ak}是一个集合列,若 A 1 ⊃ A 2 ⊃ . . . ⊃ A k ⊃ . . . A_1 \supset A_2\supset ...\supset A_k\supset... A1A2...Ak... ,则称此集合列为递减集合列

极限集

此时称其交集 ⋂ k = 1 ∞ A k \bigcap\limits_{k=1}^{\infty}A_k k=1Ak为集合列 { A k } \{A_k\} {Ak}极限集,记为 lim ⁡ k → ∞ A k = ⋂ k = 1 ∞ A k \lim\limits_{k\to\infty}A_k = \bigcap\limits_{k=1}^{\infty}A_k klimAk=k=1Ak
递增集合列与其极限集不难得到。

上下极限集

定义:设 { A k } \{A_k\} {Ak} 是一集合列,令 B j = ⋃ k = j ∞ A k ( j = 1 , 2 , . . . ) B_j = \bigcup\limits_{k=j}^{\infty}A_k \quad (j=1,2,...) Bj=k=jAk(j=1,2,...) ,则 { B j } \{B_j\} {Bj} 的极限集 lim ⁡ k → ∞ B k = ⋂ j = 1 ∞ B j \lim\limits_{k \to \infty} B_k = \bigcap\limits_{j=1}^{\infty} B_j klimBk=j=1Bj 称为集合列 { A k } \{A_k\} {Ak}上极限集,简称上限集 ,记为 lim ⁡ k → ∞ ‾ A k = ⋂ j = 1 ∞ B j = ⋂ j = 1 ∞ ⋃ k = j ∞ A k \overline{\lim\limits_{k \to \infty }}A_k = \bigcap\limits_{j=1}^{\infty} B_j = \bigcap\limits_{j=1}^{\infty} \bigcup\limits_{k=j}^{\infty}A_k klimAk=j=1Bj=j=1k=jAk

{ B j } \{B_j\} {Bj} 的定义可以看出, { B j } \{B_j\} {Bj} 是一个递减集合列,那么它的极限集就是 lim ⁡ k → ∞ B k = ⋂ j = 1 ∞ B j \lim\limits_{k \to \infty} B_k = \bigcap\limits_{j=1}^{\infty} B_j klimBk=j=1Bj

单纯看 lim ⁡ k → ∞ ‾ A k = ⋂ j = 1 ∞ ⋃ k = j ∞ A k \overline{\lim\limits_{k \to \infty }}A_k = \bigcap\limits_{j=1}^{\infty} \bigcup\limits_{k=j}^{\infty}A_k klimAk=j=1k=jAk 难以理解,这样过来 lim ⁡ k → ∞ ‾ A k = lim ⁡ k → ∞ B k = lim ⁡ k → ∞ ⋃ i = k ∞ A i \overline{\lim\limits_{k \to \infty }}A_k = \lim\limits_{k \to \infty} B_k = \lim\limits_{k \to \infty}\bigcup\limits_{i=k}^{\infty}A_i klimAk=klimBk=klimi=kAi ,于是 lim ⁡ k → ∞ ‾ A k = lim ⁡ k → ∞ ⋃ i = k ∞ A i \overline{\lim\limits_{k \to \infty }}A_k =\lim\limits_{k \to \infty}\bigcup\limits_{i=k}^{\infty}A_i klimAk=klimi=kAi ,这样就好记多了。

1.3映射与基数

1.3.1 映射

定义:设X,Y是两个非空集合,若对每个 x ∈ X x\in X xX,均存在唯一对应的 y ∈ Y y\in Y yY与之对应,则称这个对应为映射(函数或变换),若用f表示这种对应,则记为 f : X → Y f:X\to Y f:XY

理解:映射就是两个集合XY,每个x都引出一条线对应y

单射

一个Y对应一个X

理解:一个y只引出一条线对应x

满射

任意Y均有X与之对应

理解:每个y都要有x与之对应

逆映射、复合映射
特征函数

将属于A的元素映射为1,不属于A的元素映射为0,这样的一个映射在一定程度上可以作为A本身的替代

幂集
单调映射的不动点

1.3.2基数/势

对于一个集合来说,集合中的元素多少是最基本的问题之一。有限集可以用自然数数出个数,无限集怎么办?这是因为我们不清楚什么叫做A的元素与B的元素一样多。我们需要给出适当的定义。

定义:设有集合A与B。若存在一个从A到B的一一映射,则称集合A与集合B对等,记为A~B。

例子:自然数集与正偶数集对等;N*N与N对等

Cantor-Bernstein定理:若集合X与Y的某个真子集对等,Y与X的某个真子集对等,则X~Y。

定理的特例:P17.三个集合的情形。

定义

设A,B是两个集合,如果A~B,则称A与B的基数(cardinal number)或势相同,记为 A ˉ ˉ = B ˉ ˉ \bar{\bar{A}}=\bar{\bar{B}} Aˉˉ=Bˉˉ .

如果用 α \alpha α表示这一相同的基数,那么 A ˉ ˉ = α \bar{\bar{A}}= α Aˉˉ=α就表示A属于这一对等集合族。

对于两个集合A与B,记 A = α , B = β A=\alpha,B=\beta A=αB=β ,若A与B的一个子集对等,则称α不大于β,记为 α ≤ β α\leqβ αβ

由此可见,基数概念是有限集个数概念的一个推广,它反映出一切对等集所仅有的共性(数量属性)。

无限集中常见基数
1)自然数集N的基数·可列集

记自然数N的基数为 ℵ 0 \aleph_0 0,读作阿列夫零,取自希伯来文

若一个集合A的基数为 ℵ 0 \aleph_0 0,则A叫做可列集。这是由于N={1,2,3…n…},而A~N,故可将A中元素按一一对应的冠以以自然数次序排列起来,附以下标,就有 A = { a 1 , a 2 , a 3 . . . a n . . . } A=\{a_1,a_2,a_3...a_n...\} A={a1,a2,a3...an...}

定理: 任一无限集E必包含一个可列子集。这个定理说明 ℵ 0 \aleph_0 0是最小的基数。

例子:有理数 Q Q Q是可列集; N n N^ n Nn是可列集;

可数集:有限集与可列集的统称。如R中互不相交的开区间族是可数集。

可列集也可称作可数无限集。

2)R的基数·不可数集

定理: [ 0 , 1 ] [0,1] [0,1]不是可数集

我们称 ( 0 , 1 ] (0,1] (0,1]的基数为连续基数,记为c或 ℵ 1 \aleph_1 1,易知R的基数为c。

定理1设有集合列 { A k } \{A_k\} {Ak},若每个 A k A_k Ak的基数都是连续基数,则其并集 ⋃ k = 1 ∞ A k \bigcup\limits_{k=1}^{\infty}A_k k=1Ak的基数也是连续基数。

定理2(无最大基数定理) 若A是非空集合,则A与其幂集不对等。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值