实变函数自制笔记2:集合及其运算

1、集合的简介:

  • 集合:具有某种特定性质的对象全体;比如自然数集\mathbb{N}、有理数集\mathbb{Q}、实数集\mathbb{R}
  • 元素:集合内的每个对象;
  • 集合与元素的关系:x\in Ax\notin A
  • 集合的一般表示形式举例:A=\left \{ 1,2,3 \right \}A=\left \{ x\mid x<6, x\in N \right \}\left \{ x\in N\mid x<6 \right \}
  • 集合间的关系:A\subset BA\subseteq BAB的子集);AB的真子集;A=B(相等);C=A\cup B(并集);C=A\cap B(交集);C=A-B(或C=A\setminus B)(差集);当A\subset B时,A-B=\complement_AB(余集/补集)(其中若限定固定集合A讨论子集,\complement_AB记作\complement BB^{C});\left ( A-B \right )\cup \left ( B-A \right )=A\bigtriangleup B(对称差);

 2、集合的运算:

  • 集合族\left \{ A_{\alpha } \right \}_{\alpha \in I}多个集合的整体构成的集合;
  • 集合族的交集与并集:\bigcup_{\alpha \in I}^{}A_{\alpha }=\left \{ x\mid \exists \alpha \in I,x\in A_{\alpha } \right \}\bigcap_{\alpha \in I}^{}A_{\alpha }=\left \{ x\mid \forall \alpha \in I,x\in A_{\alpha } \right \}
  • 集合交并集具有交换律、结合律以及分配律:A\cup B=B\cup AA\cap B=B\cap AA\cup \left ( B\cup C \right )=\left ( A\cup B \right )\cup CA\cap \left ( B\cap C \right )=\left ( A\cap B \right )\cap CA\cap \left ( B\cup C \right )=\left ( A\cap B \right )\cup \left ( A\cap C \right )A\cup \left ( B\cap C \right )=\left ( A\cup B \right )\cap \left ( A\cup C \right );(其中分配律可以扩展到集合族的形式A\cap \left ( \bigcup_{\alpha \in I}^{} B_{\alpha }\right )= \bigcup_{\alpha \in I}^{} \left ( A\cap B_{\alpha } \right )A\cup \left ( \bigcap_{\alpha \in I}^{} B_{\alpha }\right )= \bigcap_{\alpha \in I}^{} \left ( A\cup B_{\alpha } \right ));
  • 德·摩根(De. Morgan)法则:S-\left ( \bigcup_{\alpha \in I}^{}A_{\alpha } \right )=\bigcap_{\alpha \in I}^{}\left ( S-A_{\alpha } \right )S-\left ( \bigcap_{\alpha \in I}^{}A_{\alpha } \right )=\bigcup_{\alpha \in I}^{}\left ( S-A_{\alpha } \right )

3、集合列及其上下限集:

  • 集合列\left \{ A_{k} \right \}与函数列类似,集合列就是将集合视为元素的数列;集合列的极限集记为\lim_{k\rightarrow \infty }A_{k}
  • 递减集合列:满足A_{1}\supset A_{2}\supset \cdots A_{k}\supset \cdots的集合列;此时\bigcap_{k=1}^{\infty }A_{k}\left \{ A_{k} \right \}的极限集;
  • 递增集合列:满足A_{1}\subset A_{2}\subset \cdots A_{k}\subset \cdots的集合列;此时\bigcup_{k=1}^{\infty }A_{k}\left \{ A_{k} \right \}的极限集;
  • 上限集\varlimsup_{k \to \infty}A_{k}=\lim_{k \to \infty}\sup A_{k}=\left \{ x\mid \forall j\in \mathbb{N},\exists k\geq j,x\in A_{k} \right \}集合列的最大极限集合,\varlimsup_{k \to \infty}A_{k}中的任意元素均在A_{l_{1}},A_{l_{2}},\cdots A_{l_{k}},\cdots(无穷多个A_{k})内,集合写法为\bigcap_{n=1}^{\infty }\bigcup_{m=n}^{\infty }A_{m},指的是\left (\bigcup_{m=1}^{\infty } A_{m} \right )\bigcap \left (\bigcup_{m=2}^{\infty } A_{m} \right )\bigcap \cdots \left (\bigcup_{m=k}^{\infty } A_{m} \right )\bigcap \cdots
  • 下限集\varliminf_{k \to \infty}A_{k}=\lim_{k \to \infty}\inf A_{k}=\left \{ x\mid \exists j_{0}\in \mathbb{N},\forall k\geq j_{0},x\in A_{k} \right \}集合列的最小极限集合,\varliminf_{k \to \infty}A_{k}中只有有限个k使得元素不在A_{k}内,集合写法为\bigcup_{n=1}^{\infty }\bigcap_{m=n}^{\infty }A_{m},指的是\left (\bigcap_{m=1}^{\infty } A_{m} \right )\bigcup \left (\bigcap_{m=2}^{\infty } A_{m} \right )\bigcup \cdots \left (\bigcap_{m=k}^{\infty } A_{m} \right )\bigcup \cdots
  • 上下限集相等\varlimsup_{k \to \infty}A_{k}=\varliminf_{k \to \infty}A_{k},则集合列的极限集存在,且\lim_{k \to \infty}A_{k}=\varlimsup_{k \to \infty}A_{k}=\varliminf_{k \to \infty}A_{k}
  • 递增集合列满足\varlimsup_{k \to \infty}A_{k}=\bigcup_{k=1}^{\infty }A_{k};递减集合列满足\varliminf_{k \to \infty}A_{k}=\bigcap_{k=1}^{\infty }A_{k}
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值