集合与点集3


集合与点集3

1.5 R n R^ n Rn中的基本点集

1.5.1 闭集

定义

E ⊂ R n E \subset R^n ERn ,若 E ⊃ E ′ E\supset E' EE ,则称E为闭集

这里规定空集 ϕ \phi ϕ 为闭集。

有一些点集的极限点可能不在这个点集中

闭集就是,包含它的所有极限点的这样一个点集

闭包

定义: E ∪ E ′ E\cup E' EE,记为 E ‾ \overline{E} E ,称为 E E E 的闭包

显然,E为闭集的充要条件为 E = E ‾ E=\overline{E} E=E

例子:有理数 Q Q Q 的闭包为 R R R ;开球的闭包是闭球。

闭集的运算性质

1) 闭集的并集是闭集

F 1 , F 2 F_1,F_2 F1,F2 R n R^n Rn中的闭集,则其并集 F 1 ∪ F 2 F_1 \cup F_2 F1F2也是闭集,从而有限多个闭集的并集是闭集。

2) 闭集的交集也是闭集

{ F α ∣ α ∈ I } \{F_\alpha \mid \alpha \in I\} {FααI} R n R^n Rn中的一个闭集族,则其交集 F = ⋂ α ∈ I F α F=\bigcap\limits_{\alpha \in I}F_\alpha F=αIFα是闭集。

注意 R n R^n Rn

Cantor闭集套定理

{ F k } \{F_k\} {Fk} R n R^n Rn中的非空有界闭集列,且满足 F 1 ⊃ F 2 ⊃ . . . ⊃ F k ⊃ . . . F_1 \supset F_2\supset ...\supset F_k\supset... F1F2...Fk... ,则 ⋂ k = 1 ∞ F k ≠ ϕ \bigcap\limits_{k=1}^{\infty}F_k\not=\phi k=1Fk=ϕ

证明在P32

R R R中的闭区间套定理可以类比出来

1.5.2开集

定义

G ⊂ R n G \subset R^n GRn,若 G c G^c Gc R n ∖ G R^n\setminus G RnG是闭集,则称G为开集

由定义立知, R n R^n Rn本身与空集 ϕ \phi ϕ是开集

闭集的补集就是开集咯,所以证明开集只要证明它的补集是闭集就OK啦

开集的运算性质

1) 开集的并集是开集

2) 开集的交集也是开集

3) 若G是 R n R^n Rn 中的非空点集,G是开集的充要条件是: ∀ x ∈ G , ∃ δ > 0 \forall x \in G,\exists \delta >0 xG,δ>0, 使得 B ( x , δ ) ⊂ G B(x,\delta) \subset G B(x,δ)G .

也就是说开集的任意一点都是内点

内点

E ⊂ R n E \subset R^n ERn ,对 x ∈ E x \in E xE ,若存在 δ > 0 \delta >0 δ>0 ,使得 B ( x , δ ) ⊂ G B(x,\delta) \subset G B(x,δ)G,则称 x x x E E E内点

内点的周围全是和它一集合的点,所以内点这个叫法很形象

内核

E E E的全体内点记为 E ˚ \mathring{E} E˚ ,称为 E E E内核

边界点

x ∈ E ‾ x \in \overline{E} xE ,但 x ∉ E x \notin E x/E, 则称 x x x E E E边界点

定理

下面的定理揭示出开集的构造,使我们对开集有了进一步的感性认识。

定理1

R R R 中的非空开集可数个 互不相交开区间 的 并集 。(开区间包括 ( − ∞ , a ) , ( b , + ∞ ) (-\infty,a),(b,+\infty) (,a),(b,+) 以及 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

R中互不相交的区间族可数

开区间互不相交

证明这两点即可

定理2

R n R^n Rn 中非空开集G 是 可列个 互不相交半开闭方体 的 并集。


插曲-覆盖

开覆盖

E ⊂ R n E \subset R^n ERn Γ \Gamma Γ R n R^n Rn 中的一个开集族,若对 ∀ x ∈ E , ∃ 集 合 G ∈ Γ \forall x \in E, \exists 集合G \in \Gamma xE,GΓ ,使得 x ∈ G x \in G xG ,则称 Γ \Gamma Γ E E E 的一个开覆盖

也就是说,开集族 Γ \Gamma Γ 内集合的元素“覆盖”了E的元素,甚至还多一些。所以说是一个开覆盖

子覆盖

Γ ′ ⊂ Γ \Gamma ' \subset \Gamma ΓΓ 仍然是 E E E 的一个开覆盖,那么称 Γ ′ \Gamma ' Γ Γ \Gamma Γ子覆盖

和子集一样容易理解

Heine-Borel 有限子覆盖定理

R n R^n Rn有界闭集任一 开覆盖均含有一个有限子覆盖

定理

E ⊂ R n E \subset R^n ERn,若 E E E 的任一开覆盖都包含有限子覆盖,则 E E E 是有界闭集。

则两定理说明了 R n R^n Rn 中有界闭集的充分必要条件:它的任一开覆盖都包含有限子覆盖。

紧集

若点集E的任一开覆盖都包含有限子覆盖,则称E为紧集

R n R^n Rn 中的紧集就是有界闭集

下面轮到这张图片出场了
在这里插入图片描述


1.5.3 Borel集

十分抽象,定义看昏,后续再补。

1.5.4 Cantor(三分)集

这个十分形象,好懂多了,狗头🐶

搬教材的话:Cantor集是Cantor再解三角级数问题时做出来的,它具有若干重要特征,是我们构造重要特例的基础。

定义

集合列 { F n } \{F_n\} {Fn} ,其中 F n = F n , 1 ∪ F n , 2 ∪ . . . ∪ F n , 2 n ( n = 1 , 2... ) F_n = F_{n,1} \cup F_{n,2} \cup ...\cup F_{n,2^n} (n=1,2...) Fn=Fn,1Fn,2...Fn,2n(n=1,2...) .作点集 C = ⋂ n = 1 ∞ F n C = \bigcap\limits_{n=1}^{\infty} F_n C=n=1Fn ,我们称 C 为Cantor集

其中集合列 { F n } \{F_n\} {Fn} 由这样得到:将【0,1】三等分,去掉中间的区间,分别得到两个区间【0,1/3】,【2/3,1】。记 F 1 = [ 0 , 1 3 ] ∪ [ 2 3 , 1 ] F_1=[0,\frac{1}{3}]\cup[\frac{2}{3},1] F1=[0,31][32,1] .再将F1中的两个区间进行同样的操作,对每个小区间进行三等分并去掉中间区间,得到F2。如此进行下去。

一般来说,设某次操作得到 F n F_n Fn ,则将 F n F_n Fn 中的每个区间三等分,并移去中央三分开区间,记其留存部分为 F n + 1 F_{n+1} Fn+1 ,如此我们遍得到集合列 { F n } \{F_n\} {Fn}

从集合列 { F n } \{F_n\} {Fn}的构造中,可以看出有分形那味儿了。

性质
1)C是非空有界闭集
2)C=C’,称为完全集

C中每个点都是极限点/聚点

3)C无内点
4) C的基数是c(也就是连续基数,等同于【0,1】)
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值