函数局部有界性定理_【泛函基础 4.2】一致有界性原理

本文探讨了Baire范畴定理和一致有界性原理在数学分析中的重要性。首先解释了Baire范畴定理,包括无处稠密子集、第一和第二范畴子集的定义,并通过反证法证明了定理。接着介绍了Banach-Steinhauss定理,即一致有界性原理,及其逆否命题。此外,文章还讨论了Fourier级数的收敛问题,证明了傅里叶级数不能点点收敛,并应用一致有界性原理解决相关问题。最后,简要提及了多项式的收敛问题。
摘要由CSDN通过智能技术生成

一、Baire 范畴定理

【定义:无处稠密子集(nowhere dense subset)】设 (X,d) 为度量空间,M 为 X 的子集。若

为无内点,则称它为无处稠密子集。

【例】Cantor set 是无处稠密子集,其构造方法如下:在 [0,1] 实数区间内,每次把已有的连续区间分为三份,然后去掉中间一份。反复操作,可以证明,该集合最后不包括一个长度非零的区间。

【定义:第一范畴子集(Baire first category subset / meagre)】设 (X,d) 为度量空间,M 为 X 的子集。M 可以表示为 X 中可数个无处稠密子集的并集,则称 M 为第一范畴子集。

【定义:第二范畴子集(Baire second category subset / nonmeagre)】设 (X,d) 为度量空间,M 为 X 的子集。若 M 不为第一范畴子集,则称 M 为第二范畴子集。

【定理:Baire 范畴定理(Baire category theorem)】设 (X,d) 为非空完备度量空间,则 X 作为 X 的子集为第二范畴的。

  • 【证明】即证明 X 不是第一范畴的,反证法。假设 X 为第一范畴,即可以被表示为可数个无处稠密子集的并集。观察到
    ,即可以看出不妨设 M 们都是闭集,它们的补集为开集。考虑
    中的任意一个点
    ,则存在一个
    。由于
    中不包括任何一个内点,即不包括任何一个开球,因此
    。由于
    为非空开集,因此存在
    。依次类推,能找到一
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值