Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO阅读笔记

Abstract

In frequency division duplex mode of massive multiple-input multiple-output systems,the downlink CSI必须通过反馈链路发送给基站。然而由于反馈链路的带宽限制,向基站发送CSI是昂贵的,在下行链路的通信中,实现高性能低复杂度的CSI feedback是一个挑战。由于过多参数和高计算复杂度,该网络不能有效的应用于移动端。因此提出一种新的轻量级CSI反馈网络。

1 Introduction

MIMO是5G的主要技术,即在同一时间-频率资源上使用数百个天线来服务数十个用户设备的通信系统。频分双工中,下行链路上的CSI Feedback是必要的。同时由于带宽限制,必须进行压缩传输,传统基于压缩感知的方法有缺点。难以选择合适的稀疏基,二,没有充分利用信道结构。三,迭代重建速度慢。

DL在无线通信得到广泛应用。

提出基于DL的CSI反馈轻量级网络。与ConvCsiNet相比,参数量和算法复杂度大大降低,而重构性能仅略有下降。

2 System Model

考虑单小区下行大规模MIMO系统(a single-cell downlink massive MIMO system with a BS and a UE)

BS端配置均匀线性天线阵列,发射天线数 N t > > 1 N_t >> 1 Nt>>1,UE是单个接收天线。第 n ( N = 1 , 2 , . . . , N c ) n(N=1,2,...,N_c) nN=1,2,...,Nc个子载波可以表示如下:

y n = h n T v n x n + z n y_n=h^T_nv_nx_n+z_n yn=hnTvnxn+zn

h n ∈ C N t × 1 h_n\in C^{N_t\times1} hnCNt×1, v n ∈ C N t × 1 v_n \in C^{N_t\times1} vnCNt×1, x n ∈ C x_n\in C xnC z n ∈ C z_n\in C znC

分别表示频域中的瞬时信道向量、预编码向量、下行链路中传输的数据符号、加性高斯白噪声。

此时CSI矩阵可以表示为 H = [ h 1 , . . . , h N c ] T ∈ C N c × N t H=[h1,...,h_{N_c}]^T \in C^{N_c\times N_t} H=[h1,...,hNc]TCNc×Nt,由于天线数量众多,对于一个完整的CSI矩阵,总共需要传输 N t N c N_tN_c NtNc复数。这些数据占据大量反馈资源、不可取。使用2D离散傅里叶变换(2D-DFT)、CSI矩阵可以被转换为an angular-delay domain matrix,表示为 H ′ = F d H F a H' =F_dHF_a H=FdHFa,其中 F d ∈ C N c × N c F_d \in C^{N_c\times N_c} FdCNc×Nc F a ∈ C N t × N t F_a \in C^{N_t\times N_t} FaCNt×Nt两个DFT矩阵。

H ′ H' H是稀疏的,大部分为0,只有前 N C ′ N_C' NC有值,因为多径到达之间的时间延迟在有限的周期内。所以只保留前 N c ′ N_c' Nc行。并得到 H ′ ′ ∈ C N c ′ × N t H''\in C^{N_c'\times N_t} HCNc×Nt ,参数已经减小到了 N = N c ′ N t N=N_c'N_t N=NcNt

为了方便处理,将 H ′ ′ H'' H分成实部和虚部两部分。并将这两部分叠加到第三个维度上,将处理后的信道矩阵归一化到(0,1),整个过程如下图所示,CSI feeedback网络的输入是一个 2 × 32 × 32 2\times32\times32 2×32×32的张量。

在这里插入图片描述

确切的反馈量由压缩比决定。例如在 1 / 32 1/32 1/32的压缩率下,实际反馈数据是一个大小为 16 × 2 × 2 16\times2\times2 16×2×2的张量。

下行链路CSI反馈的自动编码器网络, H ′ ′ H'' H输入到编码器,根据压缩比将其压缩成codeword s s s,然后反馈给BS,解码器将 s s s重构成 H ′ ′ H'' H

3 Two Proposed DL-Based CSI Networks

A. CSI Feedback Neural Network Architecture Based on the Convolutional Autoencoder

CsiNet表现优于传统算法。单在CSI Feedback网络中使用全连接层的最大问题是,它只能用于指定的输入大小,即给定数量的发射天线和子载波。此外,该网络不能有效地保留2D图像信号地特征,意味着性能不能进一步提高。我们提出ConvCsiNet。使用卷积层而不是全连接层来提取特征,理论上,在这种架构下训练的网络可以提高重构性能,同时适应不同天线和子载波的输入大小。

在这里插入图片描述

包括encoder和decoder。encoder包括一个卷积层和四个编码卷积网络单元(ECN)。用于完成降维和进一步的特征提取。最后一个ECN单元中卷积层的信道数量由特定的压缩比来调整。每个卷积层后接BN和Leaky ReLU激活函数。编码器输出的M维码字 s s s以特征图的形式呈现。

解码器部分包括四个反卷积网络单元(DN),两个RefineNet单元,一个卷积层。DN单元用于将码字 s s s恢复到原始信道维度,完成重构。最后一个DN单元的卷积层生成一个双通道特征映射,即两个实数矩阵,作为原始CSI矩阵实部和虚部的初始估计。这些估计然后进入两个类似RefineNet单元。用于提高重建质量,由四个卷积层组成。RefineNet中的残差,将第一个卷积层的输出添加到最后一层。最后一个卷积层使用Sigmoid激活函数将输出元素归一化为 [ 0 , 1 ] [0,1] [0,1]区间。剩余的卷积层后都接有BN层和Leaky ReLU激活函数。

B. CSI Feedback Neural Network Architecture Based on the Lightweight Structure

ConvCsiNet从理论上优化CSI反馈网络,以适应不同规模的CSI信息输入,但导致其复杂性较高。为适应移动端需求,提出ShuffleCsiNet。用轻量级结构代替平均池化和卷积层。

编码器位于用户端,比基站的计算和内存限制更多。因此,ShuffleCsiNet的解码器部分与ConvCsiNet相同。

在这里插入图片描述

编码器包括一个池化层,两个卷积层和三个shuffle network单元(SN)。使用SN来完成降维和进一步特征提取。

shuffle network的两个分支可以使用不同的感受野来学习输入信息的不同特征。通过concat叠加。然后通道shuffle。

4 Numerical Results and Analysis

基站使用 N t = 32 N_t=32 Nt=32的均匀线性阵列天线。在正常情况下,CSI反馈网络的反馈采用4bit量化。压缩比为1/16,1/32。训练集75000,验证集12500,测试集12500样本。使用均方误差损失(MSE loss)的ADAM优化器进行训练。batch size为200,训练1000轮次,学习率为0.001,GPU为NVIDIA Tesla V100。

A CSI Reconstruction Performance of the Networks

The normalized MSE(NMSE)用于评估重建性能。

N M S E = E { ∣ ∣ H − H ^ ∣ ∣ 2 2 ∣ ∣ H ∣ ∣ 2 2 } NMSE=E\{\frac {||H-\hat H||^2_2} {||H||^2_2}\} NMSE=E{H22HH^22}

余弦相似度

ρ = E { 1 N c ∑ n = 1 N c ∣ h ^ n H h n ∣ ∣ ∣ h ^ n ∣ ∣ 2 ∣ ∣ h n ∣ ∣ 2 } \rho=E\{\frac 1 {N_c} \sum ^{N_c}_{n=1} \frac {|\hat h^H_n h_n|} {||\hat h_n||_2 ||h_n||_2}\} ρ=E{Nc1n=1Nch^n2hn2h^nHhn}

其中 h ^ n \hat h_n h^n是第n个子载波的重构信道向量

B Parameter Numbers and FLOPs of the Networks
C Advantage Verification of the Channel Shuffle Structure
D Application of ConvCsiNet on Datasets of Different Sizes

5 Conclusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值