比赛开启:CCKS2022技术评测任务七“化学元素知识图谱构建及应用

a6b96a202ce92208d66762ff7f246c20.png

  • 任务描述:

随着AI技术的发展和普及,药物研发也逐渐进入到AI时代,擅长处理大数据的AI深度学习技术,就成为近年来大家关注的焦点。化合物的性质预测的主要目的在于及时发现理化性质不达标的化合物,以降低候选化合物进入临床实验失败的风险,提升药物研发的成功率。传统的化合物性质预测分析一般采取实验方式,成本高昂且耗时长。很多的研究工作都证明了机器学习技术,特别是深度学习在化合物性质预测方面的巨大潜力,这些工作使用序列(SMILES表达式)或是图(原子为节点,化学键为边)来表示化合物,用序列建模或者图神经网络(GNN)去预测化合物的属性,以辅助进行药物研发,提升效率,降低成本。但是,这些方法往往只考虑了化合物分子的结构信息,而忽略了其中蕴含的化学领域知识。因此我们以化学元素周期表为核心构建了化学元素知识图谱,并于此针对知识图谱构建的关键技术及其核心应用提出评测任务。

本任务围绕化学元素知识图谱的构建及化合物属性预测所展开。评测从化合物SMILES表示和初始的简单知识图谱开始,根据需要构建和扩充化学元素知识图谱,并基于该知识图谱进行化合物属性预测。评测本身不限制各参赛队伍使用的模型、算法和技术,但设计模型过程中必须使用该化学元素知识图谱。可以利用各种外部知识库扩充该化学元素知识图谱(例如引入官能团知识、wikipedia中的文本、图像信息等),可以利用各种序列/图算法模型、预训练手段等处理化合物分子,并进行化合物属性预测,共同促进知识图谱技术的发展。

  • 评测奖励:

第一名:人民币5000元

第二名:人民币3000元

第三名:人民币2000元

创新奖:人民币5000元

备注:同时排名前三的队伍将获授精美参赛奖牌、证书。

  • 任务组织者:

张建(浙江大学)

kg_tek@163.com(联系人)

方尹(浙江大学)

fangyin@zju.edu.cn(联系人)

张强(浙江大学)

qiang.zhang.cs@zju.edu.cn

  • 时间安排:

评测任务发布:4月11日

报名时间:4月26日 - 7月25日(通过biendata报名)

评测系统开启和验证数据集发布:4月26日

测试数据集发布:7月25日

最终测试结果:7月31日

评测报告提交:8月12日

CCKS会议日期(评测报告及颁奖):8月25日-28日

  • 报名链接:

CCKS2022: Construction and Application of Chemical Elemental Knowledge Graph - Biendata

目前还有不少知识图谱的比赛如下:数据竞赛社区 - Biendata

 

 

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论

打赏作者

AI知识图谱大本营

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值