使用python collections模块中提供的数据结构

欢迎关注”生信修炼手册”!

python内置的基本数据结构有以下几种

  1. list

  2. tuple

  3. set

  4. dict

这些基础的数据结构已经能够满足开发中的大多数需求,但是针对某些特殊场景,用基本的数据结构来实现,还是不够简便。为此,python内置了collections模块,在基本数据结构的基础上进行了扩展,提出了以下几种更具针对性的数据结构

1. Counter

Counter用于对元素进行计数,用法如下

>>> from collections import Counter
>>> Counter([1, 2, 3, 2, 2, 1])
Counter({2: 3, 1: 2, 3: 1})
>>> a = Counter([1, 2, 3, 2, 2, 1])
# 类似字典的访问方式
>>> a[2]
3
>>> a[1]
2
>>> a[3]
1

利用Counter,可以方便的提取topN的元素,用法如下

# 提取出现次数最多的两个元素
>>> a.most_common(2)
[(2, 3), (1, 2)]
# 提取出现次数最少的元素
>>> a.most_common()[-1]
(3, 1)

2. namedtuple

nameedtuple称之为命名元组,相当于为每个元素添加一个name属性,增加了代码的可读性,可以通过name来访问对应的元素,用法如下

>>> from collections import namedtuple
>>> info = namedtuple('info', ['name', 'age'])
>>> info('Andy', 22)
info(name='Andy', age=22)
>>> a = info('Andy', 22)
>>> a
info(name='Andy', age=22)
>>> a.name
'Andy'
>>> a.age
22
>>> a[0]
'Andy'
>>> a[1]
22

3. deque

deque是一个双向的队列,可以快速的在头部和尾部添加元素,用法如下

>>> from collections import deque
>>> a = deque([1, 2, 3, 4])
# 右侧添加一个元素
>>> a.append(5)
>>> a
deque([1, 2, 3, 4, 5])
# 左侧添加一个元素
>>> a.appendleft(0)
>>> a
deque([0, 1, 2, 3, 4, 5])
# 右侧删除一个元素
>>> a.pop()
5
>>> a
deque([0, 1, 2, 3, 4])
# 左侧删除一个元素
>>> a.popleft()
0
>>> a
deque([1, 2, 3, 4])
# 右侧添加多个元素
>>> a.extend([5,6])
>>> a
deque([1, 2, 3, 4, 5, 6])
# 左侧添加多个元素
>>> a.extendleft([-1,0])
>>> a
deque([0, -1, 1, 2, 3, 4, 5, 6])
# 在指定的下标处,插入元素
>>> a.insert(1, 'x')
>>> a
deque([0, 'x', -1, 1, 2, 3, 4, 5, 6])
# 删除指定的元素
>>> a.remove('x')
>>> a
deque([0, -1, 1, 2, 3, 4, 5, 6])
# 查找特定元素,返回下标
>>> a.index(2)
3
# 将队列逆序排列
>>> a.reverse()
>>> a
deque([6, 5, 4, 3, 2, 1, -1, 0])
# 统计指定元素出现的次数
>>> a.count(4)
1
# 清空队列
>>> a.clear()
>>> a
deque([])

4. defaultdict

内置dict是没有默认值的,对于某个key,必须先定义其value之后才可以访问,最典型的就是计数

# key不存在,直接对其值进行加1操作,会报错
>>> a = dict()
>>> a['a'] += 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'a'
>>>
# 先声明一个值,再进行加1 操作,正常执行
>>>
>>> a['a'] = 0
>>> a['a'] += 1
>>> a['a']
1

每次声明默认值很麻烦,defaultdict的作用就是在声明dict时就设置value的默认值,经典的使用场景如下

# 创建值为列表的字典
# 表明value的默认值为list
>>> from  collections import defaultdict
>>> a = defaultdict(list)
>>> num = [1, 2, 3, 4, 5]
>>> for i in num:
...     a['one'].append(i)
...
>>>
>>> a
defaultdict(<class 'list'>, {'one': [1, 2, 3, 4, 5]})


# 创建双层字典
# 命名value的默认值为dict
>>> a = defaultdict(dict)
>>> a['one']['tow'] = 1
>>> a['one']['three'] = 2
>>> a
defaultdict(<class 'dict'>, {'one': {'tow': 1, 'three': 2}})

5. OrderedDcit

在python3.7版本以前,字典key的顺序是乱序的,OrderedDcit的作用就是按照key插入的顺序来遍历字典,用法如下

# python 3.5
# key 乱序
>>> info = dict([('Andy', 24), ('John', 26), ('Rose', 22)])
>>> for key in info:
...     print('name: {} age: {}'.format(key, info[key]))
...
name: John age: 26
name: Andy age: 24
name: Rose age: 22


# OrderedDict
# 按照key插入的顺序
>>> order_info = collections.OrderedDict([('Andy', 24), ('John', 26), ('Rose', 22)])
>>> for key in order_info:
...     print('name: {} age: {}'.format(key, info[key]))
...
name: Andy age: 24
name: John age: 26
name: Rose age: 22

在python3.7之后,内置的dict默认就是按照key插入的顺序来记录的,不需要在借助OrderedDcit来实现上述操作了。

·end·

—如果喜欢,快分享给你的朋友们吧—

原创不易,欢迎收藏,点赞,转发!生信知识浩瀚如海,在生信学习的道路上,让我们一起并肩作战!

本公众号深耕耘生信领域多年,具有丰富的数据分析经验,致力于提供真正有价值的数据分析服务,擅长个性化分析,欢迎有需要的老师和同学前来咨询。

  更多精彩

  写在最后

转发本文至朋友圈,后台私信截图即可加入生信交流群,和小伙伴一起学习交流。

扫描下方二维码,关注我们,解锁更多精彩内容!

一个只分享干货的

生信公众号

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值