论文阅读——Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model

论文:Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model

MAE方式预训练,微调

1、MAE预训练用了两个骨干网:ViT  and ViTAE

ViTAE将诸如来自卷积的局部性之类的感应偏置与全自注意层结合在一起,即,将并行卷积分支(PCM)与MHSA层一起使用。它在预训练过程中使用PCM中核大小为1×1的卷积,以避免误导性的归纳偏差,因为MAE中的随机掩蔽策略打破了空间关系。然后,当对特定的下游任务进行微调时,内核大小被填充到3×3。假设第i个卷积层的预训练中的权重为(忽略信道空间),填充内核实现如下

其中θ是MAE期间的学习值,α初始化为0,并且在微调期间是可学习的。

ViTAE模块结构如下,在补丁嵌入层之后添加cos位置编码,以在ViTAE中包含位置信息(为了简单起见,图3未显示):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值