论文:Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
MAE方式预训练,微调
1、MAE预训练用了两个骨干网:ViT and ViTAE
ViTAE将诸如来自卷积的局部性之类的感应偏置与全自注意层结合在一起,即,将并行卷积分支(PCM)与MHSA层一起使用。它在预训练过程中使用PCM中核大小为1×1的卷积,以避免误导性的归纳偏差,因为MAE中的随机掩蔽策略打破了空间关系。然后,当对特定的下游任务进行微调时,内核大小被填充到3×3。假设第i个卷积层的预训练中的权重为(忽略信道空间),填充内核实现如下
其中θ是MAE期间的学习值,α初始化为0,并且在微调期间是可学习的。
ViTAE模块结构如下,在补丁嵌入层之后添加cos位置编码,以在ViTAE中包含位置信息(为了简单起见,图3未显示):