HRNet源代码结构解析

一、整体结构

按顺序可以分为三个部分:

1、stem net

输入IMG,输出feature map,得到这个尺寸的特征图之后,HRNet始终保持此尺寸的图片

2、HRNet的四个阶段

在这里插入图片描述
(1)每个stage产生的multi-scale特征图,配置如表1。
(2)stage 的连接处有 transition 结构,用于在不同 stage 之间连接,完成 channels 及 feature map 大小对应。
表1在这里插入图片描述

3、segment head

将stage4输出的4种scale特征concat到一起,加上num_channels->num_classes层,得到分割结果

二、HRNet中应用的结构块

1、普通的3*3的卷积,结构如下:

在这里插入图片描述

def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)
2、BasicBlock,结构如下:

在这里插入图片描述

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out
3、三层的残差块

expansion的参数,这个参数用来控制卷积的输入输出通道数。
在这里插入图片描述

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion,
                               momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

三、具体模块

1、HRNet 核心模块类:高分辨率模块(class HighResolutionModule)

实现下图红框中的,branch 并行 多 scale 特征提取 和 末端将 多 scale 特征通过 upsample/downsample 方式融合
在这里插入图片描述

class HighResolutionModule(nn.Module):
    def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
                 num_channels, fuse_method, multi_scale_output=True):
        super(HighResolutionModule, self).__init__()
        self._check_branches(
            num_branches, blocks, num_blocks, num_inchannels, num_channels)

        self.num_inchannels = num_inchannels
        self.fuse_method = fuse_method
        self.num_branches = num_branches

        self.multi_scale_output = multi_scale_output

        self.branches = self._make_branches(
            num_branches, blocks, num_blocks, num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU(False)
2、check_branches()函数

这个函数的作用是检查,在高分辨率模块中num_branches(int类型),和len(num_inchannels(里面的元素是int)),和len(num_channels(里面的元素是int))它们三个的值是否相等。

def _check_branches(self, num_branches, blocks, num_blocks,
                        num_inchannels, num_channels):
        if num_branches != len(num_blocks):
            error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
                num_branches, len(num_blocks))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_channels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
                num_branches, len(num_channels))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_inchannels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
                num_branches, len(num_inchannels))
            logger.error(error_msg)
            raise ValueError(error_msg)
3、make_one_branch函数

它的作用就是创建一个新的分支,如图
在这里插入图片描述

def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
                         stride=1):
        downsample = None
        if stride != 1 or \
           self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.num_inchannels[branch_index],
                          num_channels[branch_index] * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(num_channels[branch_index] * block.expansion,
                            momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(self.num_inchannels[branch_index],
                            num_channels[branch_index], stride, downsample))
        self.num_inchannels[branch_index] = \
            num_channels[branch_index] * block.expansion
        for i in range(1, num_blocks[branch_index]):
            layers.append(block(self.num_inchannels[branch_index],
                                num_channels[branch_index]))

        return nn.Sequential(*layers)

make_branches函数是看看每个stage里面有多少branch,然后有几个就调用几次_make_one_branch函数。

4、forward
def forward(self, x):
        if self.num_branches == 1:
            return [self.branches[0](x[0])]

        for i in range(self.num_branches):
            x[i] = self.branches[i](x[i])

        x_fuse = []
        for i in range(len(self.fuse_layers)):
            y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
            for j in range(1, self.num_branches):
                if i == j:
                    y = y + x[j]
                else:
                    y = y + self.fuse_layers[i][j](x[j])
            x_fuse.append(self.relu(y))

        return x_fuse
5、构建 multi-scale 特征融合层:fuse_layer函数

在这里插入图片描述

代码中,双重循环里面的i代表的当前融合的branch,上面的图我画出了当i=0时,所有的featuremaps都融合到0这个分支的featuremaps上面去,j代表组成融合的featuremaps所对应的branchindex

def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        num_inchannels = self.num_inchannels
        fuse_layers = []
        for i in range(num_branches if self.multi_scale_output else 1):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(nn.Sequential(
                        nn.Conv2d(num_inchannels[j],
                                  num_inchannels[i],
                                  1,
                                  1,
                                  0,
                                  bias=False),
                        nn.BatchNorm2d(num_inchannels[i], 
                                       momentum=BN_MOMENTUM),
                        nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv3x3s = []
                    for k in range(i-j):
                        if k == i - j - 1:
                            num_outchannels_conv3x3 = num_inchannels[i]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                nn.BatchNorm2d(num_outchannels_conv3x3, 
                                            momentum=BN_MOMENTUM)))
                        else:
                            num_outchannels_conv3x3 = num_inchannels[j]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                nn.BatchNorm2d(num_outchannels_conv3x3,
                                            momentum=BN_MOMENTUM),
                                nn.ReLU(False)))
                    fuse_layer.append(nn.Sequential(*conv3x3s))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)
6、transition_layers函数(上图中画叉的那一个分支)

transition layer 完成 stage 之间连接需要的 两种转换
(1)input channels 转换
(2)feature size downsample

def _make_transition_layer(
            self, num_channels_pre_layer, num_channels_cur_layer):
        num_branches_cur = len(num_channels_cur_layer)
        num_branches_pre = len(num_channels_pre_layer)

        transition_layers = []
        for i in range(num_branches_cur):
            if i < num_branches_pre:
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(nn.Sequential(
                        nn.Conv2d(num_channels_pre_layer[i],
                                  num_channels_cur_layer[i],
                                  3,
                                  1,
                                  1,
                                  bias=False),
                        nn.BatchNorm2d(
                            num_channels_cur_layer[i], momentum=BN_MOMENTUM),
                        nn.ReLU(inplace=True)))
                else:
                    transition_layers.append(None)
            else:
                conv3x3s = []
                for j in range(i+1-num_branches_pre):
                    inchannels = num_channels_pre_layer[-1]
                    outchannels = num_channels_cur_layer[i] \
                        if j == i-num_branches_pre else inchannels
                    conv3x3s.append(nn.Sequential(
                        nn.Conv2d(
                            inchannels, outchannels, 3, 2, 1, bias=False),
                        nn.BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
                        nn.ReLU(inplace=True)))
                transition_layers.append(nn.Sequential(*conv3x3s))

        return nn.ModuleList(transition_layers)
7、构建 stage1 的 layer _make_layer()

stage1 产生 1/4 feature map,没有 branch 分支结构,采用与 resnet 完成一样的 _make_layer() 函数构建层

8、构建 stage 2/3/4 的 layer _make_stage

stage 2/3/4 为 HRNet 核心结构,用到了核心类 HighResolutionModule,内含 make_branches 构建和特征 _make_fuse_layers 模块

四、数据流图

在这里插入图片描述

  • 11
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: HRNet是一种高分辨率的网络结构,其目标是解决传统网络在处理高分辨率输入(例如图像)时的信息丢失问题。HRNet通过构建并行的多分辨率分支来实现这一目标。 为了更好地理解HRNet网络结构,我使用Visio软件绘制了一个示意图。该示意图包含了HRNet的主要组件和结构。 首先,HRNet有一个输入层,用于接收高分辨率的输入图像。该输入图像经过一系列的卷积层和池化层,提取出图像的低级特征。 接下来,HRNet引入了一个关键的模块,叫做High-Resolution Block,简称HRB。HRB由一个并行的多分辨率分支组成,包括高分辨率分支和低分辨率分支。这两个分支都有自己的卷积层和池化层。高分辨率分支重点关注提取高级特征,而低分辨率分支重点关注提取粗略的全局特征。 接着,HRNet将高分辨率分支和低分辨率分支的输出进行融合,形成新的特征表达。这种融合方式能够保留高分辨率分支的细节信息,同时结合低分辨率分支的全局感知能力。 最后,HRNet通过一系列的残差连接和卷积层对特征进行进一步处理,将特征映射到最终的分类或回归结果。 在Visio示意图中,我使用不同的形状和颜色来表示HRNet的不同组件和连接关系,以便更清晰地展示网络结构。 通过这个Visio示意图,我们可以更好地理解HRNet的网络结构,并且细致地观察每个组件之间的连接和信息传递。这有助于我们更好地理解HRNet网络在处理高分辨率输入时的工作方式和优势。 ### 回答2: HRNet(High-Resolution Network)是一种高分辨率网络结构,在计算机视觉领域中被广泛应用于目标检测、姿态估计等任务。HRNet通过多级分支和深度监督的方式来处理特征图的多尺度信息,以实现更准确的目标识别和定位。 HRNet网络结构图可以使用Visio这样的绘图工具来展示。在Visio中,可以利用不同的形状和连接线来描述HRNet结构,并标注各个部分的名称和参数。 HRNet的主要结构包括高分辨率级联的特征提取和信息融合模块。首先,输入图像经过一个基础的特征提取网络,如ResNet等,得到低分辨率的特征图。然后,通过多级分支的方式,将低分辨率特征图进行上采样,得到多个不同分辨率的特征图。每个分辨率的特征图都保留了不同尺度的信息。 接着,这些不同分辨率的特征图经过信息融合模块,进行特征的交互和融合。信息融合模块使用逐级融合的策略,将不同分辨率的特征图进行级联连接,以保留更丰富的多尺度信息。同时,为了防止信息传递过程中的信息丢失,HRNet还引入了深度监督机制,在不同分辨率的特征图中添加监督损失,以促进每个分辨率的特征图的学习和优化。 综上所述,HRNet网络结构图Visio可以展示出HRNet网络的整体架构和不同分支的层次关系,帮助我们更好地理解HRNet的特点和原理,进而在实践中应用该网络结构来解决计算机视觉任务。 ### 回答3: HRNet是一种高分辨率网络结构,它在计算机视觉领域被广泛应用于人体关键点检测等任务中。HRNet网络结构图是指HRNet网络的可视化表示,通过使用Visio等图形化工具,可以清晰地展示HRNet的网络层次结构和连接方式。 HRNet网络结构图通常包括输入层、基础网络、后续网络和输出层。输入层用来接收待处理的图像数据,通常是一张二维图像。基础网络是HRNet的核心部分,它由多个分辨率较低的子网络组成,每个子网络分别处理不同分辨率的特征图。这种特殊的设计使得HRNet可以同时保留高分辨率和丰富的语义信息。 后续网络是基于基础网络得到的特征图进行进一步的处理,常用的包括上采样、融合和卷积等操作。上采样操作可以将低分辨率的特征图进行放大,使其与高分辨率的特征图保持一致。融合操作可以将多个子网络的特征图进行融合,获得更全面的特征表达。卷积操作则用来提取特征的空间信息。 最后,输出层将处理得到的特征图映射到人体关键点的位置,并输出关键点的坐标信息。这个过程通常使用全连接层或者卷积层来实现,以实现特征图和关键点之间的转换。 总的来说,HRNet网络结构图通过可视化的方式展示了HRNet网络的层次结构和连接方式,帮助人们更加直观地了解HRNet的工作原理和特点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值