吴恩达机器学习笔记:第3周-7 正则化(Regularization)7.1-7.4

第3周-7 正则化(Regularization)

7.1 过拟合的问题

过拟合:当变量过多时,训练出来的假设能很好地拟合训练集,所以代价函数实际上可能非常接近于0,但得到的曲线为了千方百计的拟合数据集,导致它无法泛化到新的样本中,无法预测新样本数据
泛化:指一个假设模型应用到新样本的能力
在这里插入图片描述
第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
欠拟合,存在高偏差,过拟合,存在高方差。

解决方法
1.丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如 PCA)
2.正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

7.2 代价函数

上面的回归问题中如果我们的模型是:
ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2^2 + 𝜃3𝑥3^3 + 𝜃4𝑥4^4
从之前的事例中看出,正是那些高次项导致了过拟合的产生,如果我们能让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。所以我们要做的就是在一定程度上减小这些参数𝜃 的值,这就是正则化的基本方法。我们决定要减少𝜃3和𝜃4的大小,我们要做的便是修改代价函数,在其中𝜃3和𝜃4 设置一点惩罚。
在这里插入图片描述
通过这样的代价函数选择出的𝜃3和𝜃4 对预测结果的影响就比之前要小许多,假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的能防止过拟合问题的假设:
在这里插入图片描述
其中𝜆又称为正则化参数(Regularization Parameter)。 注:根据惯例,我们不对𝜃0 进行惩罚。经过正则化处理的模型与原模型的可能对比如下图所示:
在这里插入图片描述
如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成 ℎ𝜃(𝑥) =𝜃0,也就是上图中红色直线所示的情况,造成欠拟合。

7.3 正则化线性回归

正则化线性回归的代价函数为:
在这里插入图片描述
梯度下降的正则化:
在这里插入图片描述
其中(j =1,2,3,4…n),𝜃0不参与其中的任何一个正则化;
对上面的算法中𝑗 = 1,2, . . . , 𝑛 时的更新式子进行调整可得:
在这里插入图片描述
正规方程的正则化:
在这里插入图片描述
if 𝜆>0:
在这里插入图片描述

7.4 正则化的逻辑回归模

首先有这么个例子
在这里插入图片描述
我们也给代价函数增加一个正则化的表达式,得到代价函数:
在这里插入图片描述
进而求得偏导,其中(j =1,2,3,4…n):
在这里插入图片描述
与之前操作类似的,得到 能计算加上正则项的cost函数的偏导 jVal代码,和计算每一个偏导值的gradient(i)代码
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值