优化深层网络2--mini batch、momentum、RMSprop、Adam

本文介绍了深度学习中的优化算法,包括mini-batch梯度下降及其大小选择,指数加权平均及其在动量法和RMSprop中的应用,以及Adam优化器的工作原理。此外,还探讨了学习率衰减的不同策略。
摘要由CSDN通过智能技术生成

目录

1.mini-batch
2.指数加权平均
3.momentum
4.RMSprop
5.Adam
6.学习率衰减


1.mini-batch

batch gradient descent:
把整个数据集当成一个批次,参数在遍历整个数据集后更新,每一次迭代的时间太长

mini-batch gradient descent:
把数据集分成若干个批次,参数在遍历一个批次数据后更新,把整个数据集遍历完一次,叫做一个 epoch。

sgd:
把一个样本看成一个批次,参数在训练完每个样本后都更新,失去了向量化操作的意义

如图,由于mini-batch 的不同批次可能会计算出不同的代价函数,因此会有波动。

在这里插入图片描述
在这里插入图片描述

mini-batch size的选择

(1)小于2000个样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值