[xgboost+shap]解决二分类问题笔记梳理

#coding=utf-8
import shap
import shap as sp
shap.initjs()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import xgboost as xgb
from sklearn import metrics
from torch.utils.data import DataLoader
from sklearn.metrics import make_scorer , accuracy_score,r2_score
from sklearn.model_selection import GridSearchCV,KFold,train_test_split,cross_val_score
import seaborn as sns
from sklearn.metrics import roc_auc_score
matplotlib.rcParams['font.family']='SimHei'   #使图片中中文文字显示,用于现实的中文为华文宋体
matplotlib.rcParams['font.size']=15  #图中中文字的大小设置
matplotlib.rcParams['axes.unicode_minus'] = False # 设置支持负号显示



dataset = pd.read_excel(io=r'C:\Users\萍萍酱\Desktop\美罗培南数据\T_dbscan+glsl.xlsx')#278组数据
dataset.drop('序号',axis=1,inplace=True) #改变内存,及输入dataset的时候,它显示改变后的数据
from sklearn.model_selection import train_test_split

y = datas
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值