#coding=utf-8
import shap
import shap as sp
shap.initjs()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import xgboost as xgb
from sklearn import metrics
from torch.utils.data import DataLoader
from sklearn.metrics import make_scorer , accuracy_score,r2_score
from sklearn.model_selection import GridSearchCV,KFold,train_test_split,cross_val_score
import seaborn as sns
from sklearn.metrics import roc_auc_score
matplotlib.rcParams['font.family']='SimHei' #使图片中中文文字显示,用于现实的中文为华文宋体
matplotlib.rcParams['font.size']=15 #图中中文字的大小设置
matplotlib.rcParams['axes.unicode_minus'] = False # 设置支持负号显示
dataset = pd.read_excel(io=r'C:\Users\萍萍酱\Desktop\美罗培南数据\T_dbscan+glsl.xlsx')#278组数据
dataset.drop('序号',axis=1,inplace=True) #改变内存,及输入dataset的时候,它显示改变后的数据
from sklearn.model_selection import train_test_split
y = datas
[xgboost+shap]解决二分类问题笔记梳理
最新推荐文章于 2025-02-12 23:29:05 发布