数理方程与特殊函数|波动方程:杆的纵振动方程

本文探讨了均匀细杆沿长度方向的小振动,忽略重力影响,利用Hooke定律建立偏微分方程,揭示了杆的纵振动与弦的横振动在数学上的相似性,并称之为波动方程。在近似处理中,未考虑纵向振动导致的杆粗细变化对其影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


考虑一均匀细杆,沿杆长方向作小振动。假设在垂直杆长方向的同一截面上各点的振动情况(即位移)完全相同,那么,这个位移是空间位置与时间的函数。

我们令任意时刻t此截面相对于平衡位置的位移为u(x, t),取杆长方向为x轴方向,垂直于杆长方向的各截面均用它的平衡位置x标记,在杆中隔离出一小段(x, x + dx),通过截面x,受到弹性力P(x, t)·S的作用,其中P(x, t)为单位面积所受的弹性力,即应力,方向沿x方向为正。同样的,通过截面x + dx,微元也受到弹性力P(x + dx, t)·S的作用。

我们将重力忽略,可以得到方程
在这里插入图片描述
我们通过dm进行一步变化:
在这里插入图片描述
这个方程中,P是未知的。所以,我们要继续寻找P的方程。


如果略去垂直干长方向的形变,根据Hooke定理,应力P与应变(相对位移)δu / δx成正比,即
在这里插入图片描述
E即为杨氏(Young)模量,是一个物质常数。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值