考虑一均匀细杆,沿杆长方向作小振动。假设在垂直杆长方向的同一截面上各点的振动情况(即位移)完全相同,那么,这个位移是空间位置与时间的函数。
我们令任意时刻t此截面相对于平衡位置的位移为u(x, t),取杆长方向为x轴方向,垂直于杆长方向的各截面均用它的平衡位置x标记,在杆中隔离出一小段(x, x + dx),通过截面x,受到弹性力P(x, t)·S的作用,其中P(x, t)为单位面积所受的弹性力,即应力,方向沿x方向为正。同样的,通过截面x + dx,微元也受到弹性力P(x + dx, t)·S的作用。
我们将重力忽略,可以得到方程
我们通过dm进行一步变化:
这个方程中,P是未知的。所以,我们要继续寻找P的方程。
如果略去垂直干长方向的形变,根据Hooke定理,应力P与应变(相对位移)δu / δx成正比,即
E即为杨氏(Young)模量,是一个物质常数。