Transformer中的位置编码PE(position encoding)
对应视频讲解:
【【代码详解】扩散模型中如何融合时间信息t到图x上(x+t),Transformer中的位置编码PE(position encoding)】
nn.Embedding使用:http://t.csdnimg.cn/m2nKN
1.提出背景
transformer模型的attention机制并没有包含位置信息,即一句话中词语在不同的位置时在transformer中是没有区别的
2.解决背景
给encoder层和decoder层的输入添加了一个额外的向量Positional Encoding(PE),与embedding维度一致
embedding维度:
- 句子:词向量的维度大小,如512
- 图片:通道数
实际应用中,会对位置信息向量如[1,2,…,16]先进行位置编码,位置编码的维度可以先保持与句子编码维度一致,如512。再通过一个线性层,将维度降为需要的通道数,最后再进行信息合并。
3. 创建一个位置编码器PE
需要的输入设置
- 序列的最大长度 max_seq_len,如1000
- 编码向量的维度 d_model,如512或128
主体逻辑
- 计算PE矩阵
- 重新定义嵌入层:将嵌入层的权重替换为PE(不可训练)
PE为二维矩阵,大小跟输入embedding的维度一样,行表示词语,列表示词向量;pos 表示词语在句子中的位置;dmodel表示词向量的维度;i表示词向量的位置。因此,上述公式表示在每个词语的词向量的偶数位置添加sin变量,奇数位置添加cos变量,以此来填满整个PE矩阵,然后加到input embedding中去,这样便完成位置编码的引入了。
参考:https://blog.csdn.net/qq_34771726/article/details/102918440
class PositionalEncoding(nn.Module):
def __init__(self, max_seq_len: int, d_model: int):
super().