Transformer中的位置编码PE(position encoding)

Transformer中的位置编码PE(position encoding)

对应视频讲解:

【代码详解】扩散模型中如何融合时间信息t到图x上(x+t),Transformer中的位置编码PE(position encoding)

nn.Embedding使用:http://t.csdnimg.cn/m2nKN

1.提出背景

transformer模型的attention机制并没有包含位置信息,即一句话中词语在不同的位置时在transformer中是没有区别的

2.解决背景

给encoder层和decoder层的输入添加了一个额外的向量Positional Encoding(PE),与embedding维度一致

embedding维度:

  • 句子:词向量的维度大小,如512
  • 图片:通道数

实际应用中,会对位置信息向量如[1,2,…,16]先进行位置编码,位置编码的维度可以先保持与句子编码维度一致,如512。再通过一个线性层,将维度降为需要的通道数,最后再进行信息合并。

3. 创建一个位置编码器PE

需要的输入设置

  • 序列的最大长度 max_seq_len,如1000
  • 编码向量的维度 d_model,如512或128

主体逻辑

  1. 计算PE矩阵
  2. 重新定义嵌入层:将嵌入层的权重替换为PE(不可训练)

PE计算
PE为二维矩阵,大小跟输入embedding的维度一样,行表示词语,列表示词向量;pos 表示词语在句子中的位置;dmodel表示词向量的维度;i表示词向量的位置。因此,上述公式表示在每个词语的词向量的偶数位置添加sin变量,奇数位置添加cos变量,以此来填满整个PE矩阵,然后加到input embedding中去,这样便完成位置编码的引入了。

参考:https://blog.csdn.net/qq_34771726/article/details/102918440

class PositionalEncoding(nn.Module):

    def __init__(self, max_seq_len: int, d_model: int):
        super().
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值