Transformer的位置编码

位置编码在Transformer模型中至关重要,因为它为无序的单词序列提供了顺序信息。通过三角函数生成的位置编码解决了不同长度句子间位置表示的问题,保证了编码的唯一性和连续性,允许模型处理不同长度的句子并捕捉长距离依赖。这种方法优于简单的数字编码,因为它能更好地反映位置权重并适应句子的动态长度。
摘要由CSDN通过智能技术生成

1. 什么是位置编码,为什么要使用位置编码

简单来说位置编码就是给一个句子中的每个token一个位置信息,通过位置编码可以明确token的前后顺序关系。

对任何语言来说,句子中词汇的顺序和位置都是非常重要的。它们定义了语法,从而定义了句子的实际语义。RNN结构本身就涵盖了单词的顺序,RNN按顺序逐字分析句子,这就直接在处理的时候整合了文本的顺序信息。

但Transformer架构抛弃了循环机制,仅采用多头自注意机制。避免了RNN较大的时间成本。并且从理论上讲,它可以捕捉句子中较长的依赖关系。

由于句子中的单词同时流经Transformer的编码器、解码器堆栈,模型本身对每个单词没有任何位置信息的。因此,仍然需要一种方法将单词的顺序整合到模型中。

想给模型一些位置信息,一个方案是在每个单词中添加一条关于其在句子中位置的信息。我们称之为“信息片段”,即位置编码。

2. 两种简单的位置编码

最容易想到两种位置编码:
(1)为每个时间步添加一个0-1范围内的数字,其中0表示第一个单词,1表示最后一个单词。

我喜欢吃洋葱 【0 0.16 0.32.....1】

我真的不喜欢吃洋葱【0 0.125 0.25.....1】

问题:我们可以看到,如果句子长度不同,那么位置编码是不一样,所以无法表示句子之间有什么相似性。

(2)1-n正整数范围分配

我喜欢吃洋葱 【1,2,3,4,5,6】

我真的不喜欢吃洋葱【1,2,3,4,5,6,7】

问题:往往句子越长,后面的值越大,数字越大说明这个位置占的权重也越大,这样的方式无法凸显每个位置的真实的权重。

3. Transformer的位置编码

可以看到上面两种简单的位置编码方式都有明显的不足,理想情况下,应满足以下标准:

  • 每个时间步都有唯一的编码。
  • 在不同长度的句子中,两个时间步之间的距离应该一致。
  • 模型不受句子长短的影响,并且编码范围是有界的。(不会随着句子加长数字就无限增大)
  • 必须是确定性的。

Transformer的作者设计了一种可以满足上面要求的三角函数位置编码方式。首先为每个不同位置的 token 单独生成一个位置向量(或者叫位置嵌入,即position embedding,缩写为PE);其次,这种编码并没有集成到模型本身中,该向量用于为每个 token 提供有关其在句子中位置的信息,也就是说,其修改了模型的输入,添加了 token 的顺序信息。最主要的就是用一个d维的向量表示一个位置编码,而之前使用一个数字表示一个位置编码。

位置编码方式如下:

在这里插入图片描述

  • 其中 d ≡ 2 0 d \equiv_2 0 d20表示 d d d 被2整除之后余数为0
  • i i i 表示给某个token计算position embedding时是在embedding的第i位,从0开始
  • 因为 s i n ( w k ⋅ t ) sin(w_k\cdot t) sin(wkt) c o s ( w k ⋅ t ) cos(w_k\cdot t) cos(wkt) 是一组,所以 k k k i i i 的二分之一

在这里插入图片描述
在这里插入图片描述
上图中长方形的宽度即为 d d d

Transformer 的位置编码如何满足四个理想条件的:

  • 每个时间步都有唯一的编码。
    从公式上可以很容易看到
  • 在不同长度的句子中,两个时间步之间的距离应该一致。
    用内积来衡量两个时间步之间的相对距离
    在这里插入图片描述
  • 模型不受句子长短的影响,并且编码范围是有界的。(不会随着句子加长数字就无限增大)
    三角函数的有界性
  • 必须是确定性的。

4. 为什么要使用三角函数进行位置编码

  • 可以使得不同位置的编码向量之间有一定的规律性,比如相邻位置之间的差异较小,而距离较远的位置之间的差异较大。

    这是由正弦和余弦函数的连续性和单调性保证的,即对于任意两个相邻的位置,它们对应的编码向量在每一个维度上都只有微小的变化,而对于任意两个距离较远的位置,它们对应的编码向量在每一个维度上都有较大的差异。

  • 可以使得编码向量在任意维度上都能保持唯一性,即不同位置在同一个维度上不会有相同的值。

    这是由正弦和余弦函数的周期性和相位差保证的,即对于任意两个不同的位置,它们对应的编码向量在每一个维度上都不相等。

在这里插入图片描述
在这里插入图片描述

我们假设max_len为50, d d d 取128,所以 w w w 的取值范围就是0.0001~1, t t t 的范围是0~49,所以三角函数自变量的取值范围是0~49,结果的取值范围为-1~1。

t t t 为0时,对应的位置编码为[0, 1, 0, 1, 0, 1, ···, 0, 1],这一点可以从下图的第一行看出来是0,1交替的。
t t t 为1时,对应的位置编码为: [ s i n ( 1 1000 0 2 128 ) , c o s ( 1 1000 0 2 128 ) , s i n ( 1 1000 0 4 128 ) , c o s ( 1 1000 0 4 128 ) , s i n ( 1 1000 0 6 128 ) , c o s ( 1 1000 0 6 128 ) , … , s i n ( 1 1000 0 128 128 ) , c o s ( 1 1000 0 128 128 ) ] [sin(\frac{1}{10000^{\frac{2}{128}}}), cos(\frac{1}{10000^{\frac{2}{128}}}), sin(\frac{1}{10000^{\frac{4}{128}}}), cos(\frac{1}{10000^{\frac{4}{128}}}), sin(\frac{1}{10000^{\frac{6}{128}}}), cos(\frac{1}{10000^{\frac{6}{128}}}), \dots , sin(\frac{1}{10000^{\frac{128}{128}}}), cos(\frac{1}{10000^{\frac{128}{128}}})] [sin(1000012821),cos(1000012821),sin(1000012841),cos(1000012841),sin(1000012861),cos(1000012861),,sin(100001281281),cos(100001281281)]

t t t 为2时,对应的位置编码为: [ s i n ( 2 1000 0 2 128 ) , c o s ( 2 1000 0 2 128 ) , s i n ( 2 1000 0 4 128 ) , c o s ( 2 1000 0 4 128 ) , s i n ( 2 1000 0 6 128 ) , c o s ( 2 1000 0 6 128 ) , … , s i n ( 2 1000 0 128 128 ) , c o s ( 2 1000 0 128 128 ) ] [sin(\frac{2}{10000^{\frac{2}{128}}}), cos(\frac{2}{10000^{\frac{2}{128}}}), sin(\frac{2}{10000^{\frac{4}{128}}}), cos(\frac{2}{10000^{\frac{4}{128}}}), sin(\frac{2}{10000^{\frac{6}{128}}}), cos(\frac{2}{10000^{\frac{6}{128}}}), \dots , sin(\frac{2}{10000^{\frac{128}{128}}}), cos(\frac{2}{10000^{\frac{128}{128}}})] [sin(1000012822),cos(1000012822),sin(1000012842),cos(1000012842),sin(1000012862),cos(1000012862),,sin(100001281282),cos(100001281282)]

相邻token位置编码每一位的 w w w 相同只有 t t t 相差1,由于三角函数的连续性,所以相邻token的位置编码值只有比很小的差别。

在这里插入图片描述
从上面效果图可以看出,这个三角函数式位置编码满足以下四个特点:

  • 语句中每个词的位置编码是唯一的;
  • 不同长度的句子中任意相邻两个词的间隔距离是一致的;
  • 模型可以很容易处理更长的语句,并且值有界;
  • 位置编码是确定性的。

5. 代码实现

  1 import torch
  2 import torch.nn as nn
  3
  4 class PositionalEncoding(nn.Module):
  5     def __init__(self, d_model, max_len=5000):
  6         super(PositionalEncoding, self).__init__()
  7         self.pe = torch.zeros(max_len, d_model)
  8         pos = torch.arange(0, max_len).float().unsqueeze(dim=1)
  9         _2i = torch.arange(0, d_model, step=2).float()
 10         omega = 1 / 10000**(_2i / d_model)
 11         self.pe[:, 0::2] = torch.sin(omega*pos)
 12         self.pe[:, 1::2] = torch.cos(omega*pos)
 13
 14     def forward(self, x):
 15         batch_size, seq_len = x.size()
 16			# max_len可以设的比较大,用的时候按需获取
 17         return self.pe[:seq_len]
 18
 19 x = torch.zeros(3, 10)
 20 pe = PositionalEncoding(8)
 21 print(pe.forward(x))

参考:
Transformer 结构详解:位置编码 | Transformer Architecture: The Positional Encoding
理解Transformer的位置编码
什么?是Transformer位置编码
讲解Transformer
【Transformer系列】深入浅出理解Positional Encoding位置编码

  • 3
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值