TensorFlow Keras 使用Inception-resnet-v2模型训练自己的分类数据集(含源码)

本文档介绍了如何利用TensorFlow 1.13.1和TensorFlow.Keras 2.2.4-tf,在Inception-resnet-v2模型上训练自定义分类数据集。数据读取通过TensorFlow的Dataset类完成,不需要转换为TFRecord格式。需要注意的是,由于模型复杂度,建议使用GPU进行训练。附带源码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow Keras 使用Inception-resnet-v2模型训练自己的分类数据集(含源码)

运行环境

TensorFlow 1.13.1
TensorFlow.Keras 2.2.4-tf

简单介绍

使用TensorFlow自带的Inception-resnet-v2模型训练自己的数据集。数据读取用的是TensorFlow自己的Dataset类,且无需转存成TFrecord格式。使用TensorFlow中的Keras,简单易懂,容易上手

注意事项

  • 先准备好一个分类数据集
  • 使用GPU训练(用CPU应该训练不动Inception-resnet-v2模型,如果没有GPU你可以换成TensorFlow现有的其他模型,但代码需要进行一定的改动)

源码

废话不多说,上源码。
DATA_PATH放数据集路径

ds = ds.prefetch(buffer_size=10*BATCH_SIZE)

这一句用于预读取数据,用的时候注意下CPU和内存,特别是内存,如果百分之九十多了就把程序关了(友情提示Ctrl+C可关闭程序),把这句话注释掉再跑

mport pathlib
import random
import tensorflow as tf

# 训练数据集路径
DATA_PATH = 'E:\dataset'
# 一个批次的大小
BATCH_SI
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值