基于Pytorch的torch.nn.embedding()实现词嵌入层

12 篇文章 3 订阅

nn.embedding()其实是NLP中常用的词嵌入层,在实现词嵌入的过程中embedding层的权重用于随机初始化词的向量,该embedding层的权重参数在后续训练时会不断更新调整,并被优化。

nn.embedding:这是一个矩阵类,该开始时里面初始化了一个随机矩阵,矩阵的长是字典的大小,宽是用来表示字典中每个元素的属性向量,向量的维度根据你想要表示的元素的复杂度而定。类实例化之后可以根据字典中元素的下标来查找元素对应的向量。

因为输入的句子长度不一,有的长有的短。长了截断,不够长补齐(我文中用’'填充,然后在nn.embedding层将其补0,也就是用它来表示无意义的词,这样在后面的max-pooling层也就自然而然会把其过滤掉,这样就不用担心他会影响识别。)


  这里说一下它的用法:
  nn.embedding()的主要3个参数:
  第一个参数num_embeddings是指词表大小
  第二个参数embedding_dim是指你需要用多少维来表示一个符号
  第三个参数pading_idx即需要用0填充的符号在词表中的位置,如下,输出中后面两个’'都有被填充为了0.

import torch
import torch.nn as nn


#词表
word_to_id = {'hello':0, '<PAD>':1,'world':2}
embeds = nn.Embedding(len(word_to_id), 4,padding_idx=word_to_id['<PAD>'])

text = 'hello world <PAD> <PAD>'
hello_idx = torch.LongTensor([word_to_id[i] for i in text.split()])
#词嵌入得到词向量
hello_embed = embeds(hello_idx)
print(hello_embed)

从以下输出可以看到,每行代表句子中一个单词的词嵌入向量,句子中的每个单词都有4维度,最后两个0向量是时用来填充补齐的没意义。
所以embedding层其实相当于将前面用索引编码的句子表示乘上embedding层的可训练权重得到的就是词嵌入的结果

输出:
tensor([[-1.1436, 1.4588, -1.2755, 0.0077],
[-0.9600, -1.9986, -1.1087, -0.1520],
[ 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000]], grad_fn=)

你也可以使用nn.Embedding.from_pretrained()加载预训练好的模型,如word2vec,glove等,在训练的过程中也可以边训练,边更新词向量,加快模型的收敛。本文用的只是简单的nn.embedding()嘿嘿~

然后具体使用 nn.embedding() 时,写在初始化搭建网络里,如下:

class Network(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__(nvocab,embed)
        self.filter_sizes = (2, 3, 4)
        self.embed = embed
        self.num_filters = 256
        self.dropout = 0.5
        self.num_classes = num_classes
        self.n_vocab = nvocab
        #通过padding_idx将<PAD>字符填充为0,因为他没意义哦,后面max-pooling自然而然会把他过滤掉哦
        self.embedding = nn.Embedding(self.n_vocab, self.embed, padding_idx=word2idx['<PAD>'])
        self.convs = nn.ModuleList(
            [nn.Conv2d(1, self.num_filters, (k, self.embed)) for k in self.filter_sizes])
        
        self.dropout = nn.Dropout(self.dropout)
        self.fc = nn.Linear(self.num_filters * len(self.filter_sizes), self.num_classes)
        
    def conv_and_pool(self, x, conv):
        x = F.relu(conv(x)).squeeze(3)
        x = F.max_pool1d(x, x.size(2)).squeeze(2)
        return x
        
    def forward(self, x):
        out = self.embedding(x)
        out = out.unsqueeze(1)
        out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)
        out = self.dropout(out)
        out = self.fc(out)
        return out
torch.nn.embeddingPyTorch中的一个模块,它用于将离散的词语或符号映射到连续向量空间中的实数向量(即词嵌入)。词嵌入是自然语言处理(NLP)中常用的一种表示方式,它将单词表示为实数向量,能够捕捉单词之间的语义关系。 通过使用torch.nn.embedding模块,我们可以创建一个词嵌入,将离散的词语索引作为输入,然后返回对应的词嵌入向量。这些向量可以用于训练神经网络模型,如文本分类、命名实体识别等任务。 以下是使用torch.nn.embedding进行词嵌入的一个简单示例: ```python import torch import torch.nn as nn # 假设有1000个单词,每个单词用一个100维的向量表示 embedding = nn.Embedding(1000, 100) # 输入的句子包含5个单词,每个单词用一个整数表示 input = torch.LongTensor([1, 4, 2, 3, 0]) # 每个整数对应一个单词 # 将输入的句子转换为词嵌入向量 output = embedding(input) print(output.shape) # 输出:torch.Size([5, 100]) ``` 在上面的示例中,我创建了一个词嵌入`embedding`,它有1000个单词和每个单词100维的向量表示。然后,我定义了一个输入句子`input`,其中包含了5个单词的索引。将这个输入传递给词嵌入后,得到了一个输出`output`,它的形状是`(5, 100)`,表示5个单词分别对应的词嵌入向量。 这只是一个简单的示例,实际上在使用词嵌入时,通常会在模型中的其他和操作中进一步使用这些词嵌入向量来完成更复杂的任务。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值