matlab把结果表示成数学式子

latex命令

用latex()将结果转化为latex格式,在复制到latex编辑器中
安利个latex在线编辑器很好用https://latex.91maths.com/

 ans(3,3)
 
ans =
 
(cos(theta2 + 747/250)*(cos(theta3 - 747/250)/(cos(theta4)*(cos(theta3 - 747/250)^2 + sin(theta3 - 747/250)^2)) - (sin(theta3 - 747/250)*sin(theta4))/(cos(theta4)^2*(cos(theta3 - 747/250)^2 + sin(theta3 - 747/250)^2))))/(cos(theta2 + 747/250)^2 + sin(theta2 + 747/250)^2) - (sin(theta2 + 747/250)*(sin(theta3 - 747/250)/(cos(theta4)*(cos(theta3 - 747/250)^2 + sin(theta3 - 747/250)^2)) + (cos(theta3 - 747/250)*sin(theta4))/(cos(theta4)^2*(cos(theta3 - 747/250)^2 + sin(theta3 - 747/250)^2))))/(cos(theta2 + 747/250)^2 + sin(theta2 + 747/250)^2)
 
>> latex(ans)

ans =

    '\frac{\cos\left(\theta _{2}+\frac{747}{250}\right)\,\left(\frac{\cos\left(\theta _{3}-\frac{747}{250}\right)}{\cos\left(\theta _{4}\right)\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}-\frac{\sin\left(\theta _{3}-\frac{747}{250}\right)\,\sin\left(\theta _{4}\right)}{{\cos\left(\theta _{4}\right)}^2\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}\right)}{{\cos\left(\theta _{2}+\frac{747}{250}\right)}^2+{\sin\left(\theta _{2}+\frac{747}{250}\right)}^2}-\frac{\sin\left(\theta _{2}+\frac{747}{250}\right)\,\left(\frac{\sin\left(\theta _{3}-\frac{747}{250}\right)}{\cos\left(\theta _{4}\right)\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}+\frac{\cos\left(\theta _{3}-\frac{747}{250}\right)\,\sin\left(\theta _{4}\right)}{{\cos\left(\theta _{4}\right)}^2\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}\right)}{{\cos\left(\theta _{2}+\frac{747}{250}\right)}^2+{\sin\left(\theta _{2}+\frac{747}{250}\right)}^2}'

在这里插入图片描述
cos ⁡ ( θ 2 + 747 250 )   ( cos ⁡ ( θ 3 − 747 250 ) cos ⁡ ( θ 4 )   ( cos ⁡ ( θ 3 − 747 250 ) 2 + sin ⁡ ( θ 3 − 747 250 ) 2 ) − sin ⁡ ( θ 3 − 747 250 )   sin ⁡ ( θ 4 ) cos ⁡ ( θ 4 ) 2   ( cos ⁡ ( θ 3 − 747 250 ) 2 + sin ⁡ ( θ 3 − 747 250 ) 2 ) ) cos ⁡ ( θ 2 + 747 250 ) 2 + sin ⁡ ( θ 2 + 747 250 ) 2 − sin ⁡ ( θ 2 + 747 250 )   ( sin ⁡ ( θ 3 − 747 250 ) cos ⁡ ( θ 4 )   ( cos ⁡ ( θ 3 − 747 250 ) 2 + sin ⁡ ( θ 3 − 747 250 ) 2 ) + cos ⁡ ( θ 3 − 747 250 )   sin ⁡ ( θ 4 ) cos ⁡ ( θ 4 ) 2   ( cos ⁡ ( θ 3 − 747 250 ) 2 + sin ⁡ ( θ 3 − 747 250 ) 2 ) ) cos ⁡ ( θ 2 + 747 250 ) 2 + sin ⁡ ( θ 2 + 747 250 ) 2 \frac{\cos\left(\theta _{2}+\frac{747}{250}\right)\,\left(\frac{\cos\left(\theta _{3}-\frac{747}{250}\right)}{\cos\left(\theta _{4}\right)\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}-\frac{\sin\left(\theta _{3}-\frac{747}{250}\right)\,\sin\left(\theta _{4}\right)}{{\cos\left(\theta _{4}\right)}^2\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}\right)}{{\cos\left(\theta _{2}+\frac{747}{250}\right)}^2+{\sin\left(\theta _{2}+\frac{747}{250}\right)}^2}-\frac{\sin\left(\theta _{2}+\frac{747}{250}\right)\,\left(\frac{\sin\left(\theta _{3}-\frac{747}{250}\right)}{\cos\left(\theta _{4}\right)\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}+\frac{\cos\left(\theta _{3}-\frac{747}{250}\right)\,\sin\left(\theta _{4}\right)}{{\cos\left(\theta _{4}\right)}^2\,\left({\cos\left(\theta _{3}-\frac{747}{250}\right)}^2+{\sin\left(\theta _{3}-\frac{747}{250}\right)}^2\right)}\right)}{{\cos\left(\theta _{2}+\frac{747}{250}\right)}^2+{\sin\left(\theta _{2}+\frac{747}{250}\right)}^2} cos(θ2+250747)2+sin(θ2+250747)2cos(θ2+250747)(cos(θ4)(cos(θ3250747)2+sin(θ3250747)2)cos(θ3250747)cos(θ4)2(cos(θ3250747)2+sin(θ3250747)2)sin(θ3250747)sin(θ4))cos(θ2+250747)2+sin(θ2+250747)2sin(θ2+250747)(cos(θ4)(cos(θ3250747)2+sin(θ3250747)2)sin(θ3250747)+cos(θ4)2(cos(θ3250747)2+sin(θ3250747)2)cos(θ3250747)sin(θ4))

pretty命令

>> simplify(ans)
 
ans =
 
cos(theta2 + theta3 + theta4)/cos(theta4)^2
 
>> pretty(ans)
cos(theta2 + theta3 + theta4)
-----------------------------
                    2
         cos(theta4)

介绍两个公式推导化简常用命令

vpa(a,5)
将a中数值用小数表示,5表示保留几位有效数字。
simplify()
一键合并同类项化简公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值