泰勒展开与黑塞矩阵(Hessian Matrix)

黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑塞矩阵。
在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数。

二元函数的黑塞矩阵

根据高等数学知识,若一元函数 f ( x ) f(x) f(x) x = x ( 0 ) x=x^{(0)} x=x(0) 点某个领域内具有任意阶导数,则 f ( x ) f(x) f(x) x ( 0 ) x^{(0)} x(0)处的泰勒展开式为
f ( x ) = f ( x ( 0 ) ) + f ′ ( x ( 0 ) ) Δ x + 1 2 f ′ ′ ( x ( 0 ) ) ( Δ x ) 2 + . . . f(x)=f(x^{(0)})+f^\prime(x^{(0)})\Delta x+\frac{1}{2}f^{\prime\prime}(x^{(0)})(\Delta x)^2+... f(x)=f(x(0))+f(x(0))Δx+21f(x(0))(Δx)2+...
其中 Δ x = x − x ( 0 ) , Δ x 2 = ( x − x ( 0 ) ) 2 \Delta x=x-x^{(0)}, \Delta x^2=(x-x^{(0)})^2 Δx=xx(0),Δx2=(xx(0))2
对于二元函数 f ( x 1 , x 2 ) f(x_1, x_2) f(x1,x2) X ( 0 ) ( x 1 ( 0 ) , x 2 ( 0 ) ) X^{(0)}(x_1^{(0)}, x_2^{(0)}) X(0)(x1(0),x2(0)) 点处的泰勒展开式为:
f ( x 1 , x 2 ) = f ( x 1 ( 0 ) , x 2 ( 0 ) ) + ∂ f ∂ x 1 ∣ X ( 0 ) Δ x 1 + ∂ f ∂ x 2 ∣ X ( 0 ) Δ x 2 + 1 2 [ ∂ 2 f ∂ x 1 2 ∣ X ( 0 ) Δ x 1 2 + 2 ∂ 2 f ∂ x 1 ∂ x 2 ∣ X ( 0 ) Δ x 1 Δ x 2 + ∂ 2 f ∂ x 2 2 ∣ X ( 0 ) Δ x 2 2 ] + . . . f(x_1,x_2)=f(x_1^{(0)}, x_2^{(0)})+\frac{\partial f}{\partial x_1}\bigg |_{X^{(0)}}\Delta x_1+\frac{\partial f}{\partial x_2}\bigg |_{X^{(0)}} \Delta x_2+\frac{1}{2}[\frac{\partial^2 f}{\partial x_1^2}\bigg |_{X^{(0)}}\Delta x_1^2+2\frac{\partial^2 f}{\partial x_1\partial x_2}\bigg |_{X^{(0)}}\Delta x_1\Delta x_2+\frac{\partial^2 f}{\partial x_2^2}\bigg |_{X^{(0)}}\Delta x_2^2]+... f(x1,x2)=f(x1(0),x2(0))+x1fX(0)Δx1+x2fX(0)Δx2+21[x122fX(0)Δx12+2x1x22fX(0)Δx1Δx2+x222fX(0)Δx22]+...
其中 Δ x 1 = x 1 − x 1 ( 0 ) , Δ x 2 = x 2 − x 2 ( 0 ) \Delta x_1=x_1-x_1^{(0)}, \Delta x_2=x_2-x_2^{(0)} Δx1=x1x1(0),Δx2=x2x2(0)
将上述展开式写成矩阵形式,则有:
f ( X ) = f ( X ( 0 ) ) + ( ∂ f ∂ x 1 , ∂ f ∂ x 2 ) X ( 0 ) ( Δ x 1 Δ x 2 ) + 1 2 ( Δ x 1 , Δ x 2 ) ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) ∣ X ( 0 ) ( Δ x 1 Δ x 2 ) + . . . f(X)=f(X^{(0)})+(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2})_{X_{(0)}}\dbinom{\Delta x_1}{\Delta x_2}+\frac{1}{2}(\Delta x_1, \Delta x_2)\begin{pmatrix}\frac{\partial^2 f}{\partial x_1^2}&\frac{\partial^2f}{\partial x_1\partial x_2}\\ \frac{\partial^2f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2^2}\end{pmatrix}\bigg|_{X^{(0)}}\dbinom{\Delta x_1}{\Delta x_2}+... f(X)=f(X(0))+(x1f,x2f)X(0)(Δx2Δx1)+21(Δx1,Δx2)(x122fx2x12fx1x22fx222f)X(0)(Δx2Δx1)+...
即:
f ( X ) = f ( X ( 0 ) ) + Δ f ( X ( 0 ) ) T Δ X + 1 2 Δ X T G ( X ( 0 ) ) Δ X + . . . f(X)=f(X^{(0)})+\Delta f(X^{(0)})^T\Delta X+\frac{1}{2}\Delta X^TG(X^{(0)})\Delta X+... f(X)=f(X(0))+Δf(X(0))TΔX+21ΔXTG(X(0))ΔX+...
其中
G ( X ( 0 ) ) = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) ∣ X ( 0 ) , Δ X = ( Δ x 1 Δ x 2 ) G(X^{(0)})=\begin{pmatrix}\frac{\partial^2 f}{\partial x_1^2}&\frac{\partial^2f}{\partial x_1\partial x_2}\\ \frac{\partial^2f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2^2}\end{pmatrix}\bigg|_{X^{(0)}}, \Delta X=\dbinom{\Delta x_1}{\Delta x_2} G(X(0))=(x122fx2x12fx1x22fx222f)X(0),ΔX=(Δx2Δx1)
G ( X ( 0 ) ) G(X^{(0)}) G(X(0)) f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) X ( 0 ) X^{(0)} X(0) 处的黑塞矩阵。它是由函数 f ( ( x 1 , x 2 ) f((x_1,x_2) f((x1,x2) X ( 0 ) X^{(0)} X(0) 处的二阶偏导数所组成的方阵

多元函数的黑塞矩阵
将二元函数的泰勒展开式推广到多元函数,则 f ( x 1 , x 2 , . . . , x n ) f(x_1, x_2, ..., x_n) f(x1,x2,...,xn) X ( 0 ) X^{(0)} X(0) 点处的泰勒展开式的矩阵形式为:
f ( X ) = f ( X ( 0 ) ) + Δ f ( X ( 0 ) ) T Δ X + 1 2 Δ X T G ( X ( 0 ) ) Δ X + . . . f(X)=f(X^{(0)})+\Delta f(X^{(0)})^T\Delta X+\frac{1}{2}\Delta X^TG(X^{(0)})\Delta X+... f(X)=f(X(0))+Δf(X(0))TΔX+21ΔXTG(X(0))ΔX+...
其中:
(1) Δ f ( X 0 ) ) = [ ∂ f ∂ x 1 , ∂ f ∂ x 2 , . . . , ∂ f ∂ x n ] ∣ X ( 0 ) T \Delta f(X^{0)})=[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}]\bigg|_{X^{(0)}}^T Δf(X0))=[x1f,x2f,...,xnf]X(0)T,他是 f ( x ) f(x) f(x) X ( 0 ) X^{(0)} X(0) 点处的梯度
(2) G ( X ( 0 ) ) = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 . . . ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 . . . ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 . . . ∂ 2 f ∂ x n 2 ) X ( 0 ) G(X^{(0)})=\begin{pmatrix}\frac{\partial^2 f}{\partial x_1^2}&\frac{\partial^2 f}{\partial x_1\partial x_2}&...&\frac{\partial^2 f}{\partial x_1\partial x_n}\\\frac{\partial^2 f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2^2}&...&\frac{\partial^2 f}{\partial x_2\partial x_n}\\\vdots&\vdots&\ddots&\vdots\\\frac{\partial^2 f}{\partial x_n\partial x_1}&\frac{\partial^2 f}{\partial x_n\partial x_2}&...&\frac{\partial^2 f}{\partial x_n^2}\\\end{pmatrix}_{X^{(0)}} G(X(0))=x122fx2x12fxnx12fx1x22fx222fxnx22f.........x1xn2fx2xn2fxn22fX(0) 为函数 f ( X ) f(X) f(X) X ( 0 ) X^{(0)} X(0) 点处的黑塞矩阵
黑塞矩阵是由目标函数 f f f 在点X处的二阶偏导数组成的 n × n n×n n×n 阶对称矩阵。

  • 7
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值