拉格朗日鞍点(Lagrange Saddle Point)

拉格朗日鞍点(Lagrange saddle point)是非线性规划问题中满足特定条件的点。对于非线性规划问题(NP),它的拉格朗日函数是指目标函数和约束条件中函数的如下线性组合:
L ( x , λ , μ ) = f ( x ) + ∑ i = 1 p λ i g i ( x ) + ∑ j = 1 q μ j h j ( x ) L(x,\lambda,\mu)=f(x)+\sum\limits_{i=1}^p\lambda_ig_i(x)+\sum\limits_{j=1}^q\mu_jh_j(x) L(x,λ,μ)=f(x)+i=1pλigi(x)+j=1qμjhj(x)

其中 x ∈ R n , λ = ( λ 1 , λ 2 , . . . , λ p ) T , μ = ( μ 1 , μ 2 , . . . μ q ) T x\in R^n,\lambda=(\lambda_1,\lambda_2,...,\lambda_p)^T,\mu=(\mu_1,\mu_2,...\mu_q)^T xRn,λ=(λ1,λ2,...,λp)T,μ=(μ1,μ2,...μq)T

满足条件
L ( x ∗ , λ , μ ) ≤ L ( x ∗ , λ ∗ , μ ∗ ) ≤ L ( x , λ ∗ , μ ∗ ) L(x^*,\lambda,\mu)\le L(x^*,\lambda^*,\mu^*)\le L(x,\lambda^*,\mu^*) L(x,λ,μ)L(x,λ,μ)L(x,λ,μ)

( x , x ∗ ∈ R n ; λ , λ ∗ ∈ R p , λ ≥ 0 , λ ∗ ≥ 0 ; μ ; μ ∗ ∈ R q ) (x,x^*\in R^n;\lambda,\lambda^*\in R^p,\lambda\ge0,\lambda^*\ge0;\mu;\mu^*\in R^q) (x,xRn;λ,λRp,λ0,λ0;μ;μRq)

的点称为(NP)的拉格朗日鞍点

定理
( x ∗ , λ ∗ , μ ∗ ) (x^*,\lambda^*,\mu^*) (x,λ,μ)是凸优化问题的KKT点,则 ( x ∗ , λ ∗ , μ ∗ ) (x^*,\lambda^*,\mu^*) (x,λ,μ)为对应的拉格朗日函数的鞍点,同时 x ∗ x^* x也是该凸优化问题的全局极小点。

鞍点定理(Saddle Point Theorem)
是关于拉格朗日函数的鞍点与约束优化问题最优点之间的关系定理。鞍点是函数平稳点的一种,应用鞍点的性质,可以推得最优点的充分条件如下:对于约束极小化问题,如果其拉格朗日函数的鞍点 ( x ∗ , λ ∗ , μ ∗ ) (x^*,\lambda^*,\mu^*) (x,λ,μ) 存在,即有 L ( x ∗ , λ , μ ) ≤ L ( x ∗ , λ ∗ , μ ∗ ) ≤ L ( x , λ ∗ , μ ∗ ) L(x^*,\lambda,\mu)\le L(x^*,\lambda^*,\mu^*)\le L(x,\lambda^*,\mu^*) L(x,λ,μ)L(x,λ,μ)L(x,λ,μ),那么相应的 x ∗ x^* x 必是该约束极小化问题的最优点。由于没有涉及函数的凸性与可微性,适用范围较广,但因求解鞍点很困难,且即使原问题的最优点存在,它的拉格朗日函数也不一定有鞍点,故目前并不实用

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值