深度学习一 —— 手撕softmax

1. softmax

softmax 公式

s o f t m a x ( x i ) = e x i ∑ j ( e x j ) softmax(x_i) = \frac{e^{x_i}}{\sum_j(e^{x_j})} softmax(xi)=j(exj)exi

代码

import numpy as np
 
def softmax(x, axis = 1):
    assert (len(x.shape) > 1, "dimension must be larger than 1")
    x -= np.max(x, axis=axis, keepdims=True)
    x = np.exp(x) / np.sum(np.exp(x), axis=axis, keepdims=True)
    return x

注意:

为了稳定的计算softmax概率,防止 e x e^x ex过大,出现 n a n nan nan的情况,会选择减去其最大值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

L☆★

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值