RadioML2018.01数据集中classes排列问题
最近在做关于射频机器学习相关的内容,用到了DeepSig公司的开源数据集RadioML2018.01数据集,该数据集构成如下:
但是在使用GNURadio时发现了一些问题,输出的频谱图和实际的调制类型并不相符,于是查询了Timothy James O’Shea同年发表的论文Over-the-Air Deep Learning Based Radio Signal Classification
发现在论文末尾有关于调制内容的图片展示
于是我也将数据集抽样打印出来,得到以下图片:
经过对比,发现问题
可以看到自行使用python绘制出的IQ时域波形与作者论文中的插图有部分无法对应,疑似出现调制模式错位的问题。
在没有其他信息帮助的情况下,于是我选择死马当活马医战术,使用了作者在其论文中所列举的调制内容排列顺序作为classes
的排序:
classes = [ 'OOK','4ASK','8ASK','BPSK', 'QPSK','8PSK','16PSK','32PSK','16APSK', '32APSK','64APSK','128APSK',
'16QAM', '32QAM','64QAM','128QAM','256QAM','AM-SSB-WC','AM-SSB-SC','AM-DSB-WC',
'AM-DSB-SC','FM', 'GMSK','OQPSK']
重新绘制,得到与论文中相匹配的图片:
附录:plot程序
import matplotlib.pyplot as plt
import numpy as np
import csv
import os
#plot图代码,避免以后我忘了可以回来查看一下,写的很烂网友们可以稍微参考一下
#filepath是我经过提取分类后的数据集,保存为每个单独的IQ数据,csv格式
MOD = [ 'OOK','4ASK','8ASK','BPSK', 'QPSK','8PSK','16PSK','32PSK','16APSK', '32APSK','64APSK','128APSK',
'16QAM', '32QAM','64QAM','128QAM','256QAM','AM-SSB-WC','AM-SSB-SC','AM-DSB-WC',
'AM-DSB-SC','FM', 'GMSK','OQPSK']
fileroot = os.getcwd()
filepath = os.path.join(fileroot,'dataset_RERA_2_1024')
SNR = 10 #选择信噪比为10dB的样本
part = 8
for i,mod in enumerate(MOD):
num = np.random.randint(0, 100, 1) #在给定范围内任意选取一个样本
filename = os.path.join(filepath, MOD[i], str(SNR), '{}_{}dB_{}.csv'.format(MOD[i], SNR, num.item()))
print(filename)
csv_file = csv.reader(open(file=filename))
data_I = []
data_Q = []
for idx, line in enumerate(csv_file):
if idx == 0:
data_I = np.array(line).astype(np.float32)
else:
data_Q = np.array(line).astype(np.float32)
t = range(0, int(1024/part))
plt.subplot(3,8,1+i)
plt.plot(t, data_I[range(0,1024,part)], 'b', t, data_Q[range(0,1024,part)], 'g',linewidth=1)
plt.title('{}_{}dB_{}'.format(MOD[i], SNR, num.item()),fontdict={'weight':'normal','size': 10,'color':'blue'})
plt.show()
同时我也在RadioML的github上进行了勘误,详情请见radioML/dataset/
如果有问题欢迎交流!