[数据集勘误]RadioML2018.01数据集中classes排列问题

RadioML2018.01数据集中classes排列问题

最近在做关于射频机器学习相关的内容,用到了DeepSig公司的开源数据集RadioML2018.01数据集,该数据集构成如下:
在这里插入图片描述

但是在使用GNURadio时发现了一些问题,输出的频谱图和实际的调制类型并不相符,于是查询了Timothy James O’Shea同年发表的论文Over-the-Air Deep Learning Based Radio Signal Classification

发现在论文末尾有关于调制内容的图片展示

论文插图
于是我也将数据集抽样打印出来,得到以下图片:
在这里插入图片描述
经过对比,发现问题
在这里插入图片描述
可以看到自行使用python绘制出的IQ时域波形与作者论文中的插图有部分无法对应,疑似出现调制模式错位的问题。

在没有其他信息帮助的情况下,于是我选择死马当活马医战术,使用了作者在其论文中所列举的调制内容排列顺序作为classes的排序:
在这里插入图片描述

classes = [ 'OOK','4ASK','8ASK','BPSK', 'QPSK','8PSK','16PSK','32PSK','16APSK', '32APSK','64APSK','128APSK',
        '16QAM', '32QAM','64QAM','128QAM','256QAM','AM-SSB-WC','AM-SSB-SC','AM-DSB-WC',
        'AM-DSB-SC','FM', 'GMSK','OQPSK']

重新绘制,得到与论文中相匹配的图片:
在这里插入图片描述
附录:plot程序

import matplotlib.pyplot as plt
import numpy as np
import csv
import os
#plot图代码,避免以后我忘了可以回来查看一下,写的很烂网友们可以稍微参考一下
#filepath是我经过提取分类后的数据集,保存为每个单独的IQ数据,csv格式
MOD = [ 'OOK','4ASK','8ASK','BPSK', 'QPSK','8PSK','16PSK','32PSK','16APSK', '32APSK','64APSK','128APSK',
        '16QAM', '32QAM','64QAM','128QAM','256QAM','AM-SSB-WC','AM-SSB-SC','AM-DSB-WC',
        'AM-DSB-SC','FM', 'GMSK','OQPSK']
fileroot = os.getcwd()
filepath = os.path.join(fileroot,'dataset_RERA_2_1024')
SNR = 10  #选择信噪比为10dB的样本
part = 8
for i,mod in enumerate(MOD):
    num = np.random.randint(0, 100, 1)  #在给定范围内任意选取一个样本
    filename = os.path.join(filepath, MOD[i], str(SNR), '{}_{}dB_{}.csv'.format(MOD[i], SNR, num.item()))
    print(filename)
    csv_file = csv.reader(open(file=filename))
    data_I = []
    data_Q = []

    for idx, line in enumerate(csv_file):
        if idx == 0:
            data_I = np.array(line).astype(np.float32)
        else:
            data_Q = np.array(line).astype(np.float32)

    t = range(0, int(1024/part))

    plt.subplot(3,8,1+i)
    plt.plot(t, data_I[range(0,1024,part)], 'b', t, data_Q[range(0,1024,part)], 'g',linewidth=1)
    plt.title('{}_{}dB_{}'.format(MOD[i], SNR, num.item()),fontdict={'weight':'normal','size': 10,'color':'blue'})
plt.show()

同时我也在RadioML的github上进行了勘误,详情请见radioML/dataset/

如果有问题欢迎交流!

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值