【OpenCV】-21、霍夫圆检测

【OpenCV】霍夫圆检测

霍夫圆检测原理

在这里插入图片描述
在这里插入图片描述
从平面坐标到极坐标转换三个参数
在这里插入图片描述
假设平面坐标的任意一个圆上的点,转换到极坐标中:
在这里插入图片描述
处有最大值,霍夫变换正是利用这个原理实现圆的检测。

相关API cv::HoughCircles
因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。
基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:
1. 检测边缘,发现可能的圆心
2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 – 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

代码实现

#include<opencv2/opencv.hpp>
#include<iostream>
#include<math.h>

using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
	Mat src, gray_src, dst;
	src = imread("1.jpg");
	if (src.empty()) {
		cout << "can not load the image..." << endl;
		return -1;
	}
	char input_title[] = "input";
	char output_title[] = "houghcircles_demo";
	namedWindow(input_title, CV_WINDOW_AUTOSIZE);
	imshow(input_title, src);

	//中值滤波
	Mat median_src;
	medianBlur(src, median_src, 3);
	cvtColor(median_src, gray_src, CV_BGR2GRAY);

	//霍夫圆检测
	vector<Vec3f>pcircles;
	HoughCircles(gray_src, pcircles, CV_HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) {
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 3, LINE_AA);//绘制圆
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(255,25, 125), 3, LINE_AA);//绘制圆心

	}
	imshow(output_title, dst);
	imwrite("houghcircles.jpg", dst);

	waitKey(0);
	return 0;

}

实验效果
原图
在这里插入图片描述
霍夫圆检测
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值