【OpenCV】霍夫圆检测
霍夫圆检测原理
从平面坐标到极坐标转换三个参数
假设平面坐标的任意一个圆上的点,转换到极坐标中:
处有最大值,霍夫变换正是利用这个原理实现圆的检测。
相关API cv::HoughCircles
因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。
基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:
1. 检测边缘,发现可能的圆心
2. 基于第一步的基础上从候选圆心开始计算最佳半径大小
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1;
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 – 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径
)
代码实现
#include<opencv2/opencv.hpp>
#include<iostream>
#include<math.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
Mat src, gray_src, dst;
src = imread("1.jpg");
if (src.empty()) {
cout << "can not load the image..." << endl;
return -1;
}
char input_title[] = "input";
char output_title[] = "houghcircles_demo";
namedWindow(input_title, CV_WINDOW_AUTOSIZE);
imshow(input_title, src);
//中值滤波
Mat median_src;
medianBlur(src, median_src, 3);
cvtColor(median_src, gray_src, CV_BGR2GRAY);
//霍夫圆检测
vector<Vec3f>pcircles;
HoughCircles(gray_src, pcircles, CV_HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
src.copyTo(dst);
for (size_t i = 0; i < pcircles.size(); i++) {
Vec3f cc = pcircles[i];
circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 3, LINE_AA);//绘制圆
circle(dst, Point(cc[0], cc[1]), 2, Scalar(255,25, 125), 3, LINE_AA);//绘制圆心
}
imshow(output_title, dst);
imwrite("houghcircles.jpg", dst);
waitKey(0);
return 0;
}
实验效果
原图
霍夫圆检测