霍夫圆检测是一种图像处理技术,用于检测图像中的圆形物体。它基于霍夫变换,利用图像中圆形的特殊形状来进行检测。
在 OpenCV 中,可以使用 HoughCircles 函数实现霍夫圆检测。以下是该函数的基本原理:
对图像进行预处理,例如进行边缘检测等操作,以便更容易检测圆形物体。
通过设置一系列参数,如累加器的分辨率、圆形的最小和最大半径等,初始化 Hough 变换。
对于每个像素,遍历可能的半径范围,并计算圆心。将圆心的位置在累加器中进行投票。
根据累加器中的投票结果,找到最可能的圆形位置和半径。
以下是一个基本的 OpenCV C++ 实现示例:
#include <opencv2/opencv.hpp>
using namespace cv;
int main(int argc, char** argv)
{
Mat src, gray;
src = imread("circle.jpg", IMREAD_COLOR);
cvtColor(src, gray, COLOR_BGR2GRAY);
GaussianBlur(gray, gray, Size(9, 9), 2, 2);
vector<Vec3f> circles;
HoughCircles(gray, circles, HOUGH_GRADIENT, 1, gray.rows/8, 200, 100, 0, 0);
for(size_t i = 0; i < circles.size(); i++)
{
Vec3i c = circles[i];
Point center = Point(c[0], c[1]);
int radius = c[2];
circle(src, center, radius, Scalar(0, 0, 255), 3, LINE_AA);
}
imshow("circles", src);
waitKey(0);
return 0;
}
在这个例子中,我们首先读入一个彩色图像,然后将其转换为灰度图像并应用高斯模糊进行平滑处理。接下来,我们使用 HoughCircles 函数来检测图像中的圆形物体,并将其画在原始图像上。
轮廓检测是一种常见的计算机视觉算法,用于检测图像中物体的轮廓。OpenCV是一种流行的计算机视觉库,提供了许多用于轮廓检测的函数。