OpenCV——霍夫圆检测

文章介绍了霍夫圆检测技术,这是一种在图像中检测圆形物体的方法,基于霍夫变换。在OpenCV库中,通过HoughCircles函数可以实现这一过程,包括图像预处理、参数设置、圆形投票和检测。示例代码展示了如何在C++中应用这些步骤来检测和绘制图像中的圆形。
摘要由CSDN通过智能技术生成

霍夫圆检测是一种图像处理技术,用于检测图像中的圆形物体。它基于霍夫变换,利用图像中圆形的特殊形状来进行检测。

在 OpenCV 中,可以使用 HoughCircles 函数实现霍夫圆检测。以下是该函数的基本原理:

对图像进行预处理,例如进行边缘检测等操作,以便更容易检测圆形物体。

通过设置一系列参数,如累加器的分辨率、圆形的最小和最大半径等,初始化 Hough 变换。

对于每个像素,遍历可能的半径范围,并计算圆心。将圆心的位置在累加器中进行投票。

根据累加器中的投票结果,找到最可能的圆形位置和半径。

以下是一个基本的 OpenCV C++ 实现示例:

#include <opencv2/opencv.hpp>

using namespace cv;

int main(int argc, char** argv)
{
    Mat src, gray;
    src = imread("circle.jpg", IMREAD_COLOR);

    cvtColor(src, gray, COLOR_BGR2GRAY);
    GaussianBlur(gray, gray, Size(9, 9), 2, 2);

    vector<Vec3f> circles;
    HoughCircles(gray, circles, HOUGH_GRADIENT, 1, gray.rows/8, 200, 100, 0, 0);

    for(size_t i = 0; i < circles.size(); i++)
    {
        Vec3i c = circles[i];
        Point center = Point(c[0], c[1]);
        int radius = c[2];
        circle(src, center, radius, Scalar(0, 0, 255), 3, LINE_AA);
    }

    imshow("circles", src);
    waitKey(0);

    return 0;
}

在这个例子中,我们首先读入一个彩色图像,然后将其转换为灰度图像并应用高斯模糊进行平滑处理。接下来,我们使用 HoughCircles 函数来检测图像中的圆形物体,并将其画在原始图像上。

轮廓检测是一种常见的计算机视觉算法,用于检测图像中物体的轮廓。OpenCV是一种流行的计算机视觉库,提供了许多用于轮廓检测的函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值