week2: 基于pytorch的CIFAR10彩色图片识别实验

基于pytorch的CIFAR10彩色图片识别实验

Ⅰ Ⅰ Introduction:
  • 本文为机器学习经典案例:基于CIFAR10数据集的彩色图片识别实验的学习记录。
  • 学习目标:
    • 学习如何编写一个完整的深度学习程序
    • 学会推到卷积层与池化层的计算过程
    • 基于torch.nn构建CNN网络
Ⅱ Ⅱ Experiment:
  1. 数据准备与任务分析:

使用dataset下载CIFAR10数据集,并划分好训练集与测试集

train_ds = torchvision.datasets.CIFAR10('data',
                                        train = True,
                                        transform=torchvision.transforms.ToTensor(),
                                        download=True)

test_ds = torchvision.datasets.CIFAR10('data',
                                        train = False,
                                        transform=torchvision.transforms.ToTensor(),
                                        download=True)

train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
                                       batch_size=batch_size)

使用dataloader加载数据,并设置好基本的batch_size,以及device等基础配置。同时通过以下代码取一个批次来查看数据格式:

device = torch.device("cuda")
batch_size = 32
loss_fn = nn.CrossEntropyLoss()
learn_rate = 1e-2

imgs, labels = next(iter(train_dl))
print(imgs.shape)

在这里插入图片描述

  1. 配置环境:
  • 语言环境:python 3.8
  • 编译器: pycharm
  • 深度学习环境:
    • torch==2.11
    • cuda12.1
    • torchvision==0.15.2a0
  1. 构建网络:
    构建CNN网络:
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # features extraction network
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
        self.pool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(64,64,kernel_size=3)
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3)
        self.pool3 = nn.MaxPool2d(kernel_size=2)

        #classification
        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, num_class)

    #propagate forward
    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

faltten:Flatten层主要是用来将输入“压平”,即把多维的输入一维化,
用在卷积层到全连接层的过渡。其不会影响batch的大小,
可以理解为把高纬度的数组按照x轴或者y轴进行拉伸,变成一维的数组
两个参数start,end分别表示展平开始的dim和结束的dim,默认为0,-1.

通过smmary打印查看网络结构:

from torchinfo import summary
model = Model().to(device)

summary(model)
>>>
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0

  1. 训练模型:

设置优化器,损失函数,学习率,同时编写训练函数:

opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_loss, train_acc = 0, 0

    
    for imgs, tags in dataloader:
        imgs, tags = imgs.to(device), tags.to(device)

        #cal the loss
        pred = model(imgs)
        loss = loss_fn(pred, tags)

        opt.zero_grad()
        loss.backward()
        opt.step()

        train_acc += (pred.argmax(1) == tags).type(torch.float).sum().item()
        train_loss += loss.item()
    
    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

编写主函数,设置训练轮次为20:

epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:3f}, Test_acc:{:.1f}%, Test_loss:{:3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))

print('Done')
  1. 测试模型:

训练过程中,需要编写测试函数来做评估:

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, test_acc = 0, 0
    #when stop training, stop grad trace
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1)==target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss
  1. 实验结果及可视化:

绘制实验结果的图像:

plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

训练过程及实验结果如下:

Epoch: 4, Train_acc:40.6%, Train_loss:1.630510, Test_acc:43.0%, Test_loss:1.557642
Epoch: 5, Train_acc:44.7%, Train_loss:1.519355, Test_acc:46.7%, Test_loss:1.459393
Epoch: 4, Train_acc:40.6%, Train_loss:1.630510, Test_acc:43.0%, Test_loss:1.557642
Epoch: 5, Train_acc:44.7%, Train_loss:1.519355, Test_acc:46.7%, Test_loss:1.459393
Epoch: 4, Train_acc:40.6%, Train_loss:1.630510, Test_acc:43.0%, Test_loss:1.557642
Epoch: 5, Train_acc:44.7%, Train_loss:1.519355, Test_acc:46.7%, Test_loss:1.459393
Epoch: 6, Train_acc:48.4%, Train_loss:1.427109, Test_acc:49.3%, Test_loss:1.391754
Epoch: 7, Train_acc:51.7%, Train_loss:1.347142, Test_acc:52.7%, Test_loss:1.314253
Epoch: 8, Train_acc:54.1%, Train_loss:1.279251, Test_acc:54.8%, Test_loss:1.248326
Epoch: 9, Train_acc:56.6%, Train_loss:1.217414, Test_acc:53.0%, Test_loss:1.347135
Epoch:10, Train_acc:58.8%, Train_loss:1.163029, Test_acc:57.7%, Test_loss:1.191525
Epoch:11, Train_acc:60.9%, Train_loss:1.109804, Test_acc:56.1%, Test_loss:1.258321
Epoch:12, Train_acc:62.8%, Train_loss:1.062076, Test_acc:58.8%, Test_loss:1.182578
Epoch:13, Train_acc:64.3%, Train_loss:1.018153, Test_acc:62.4%, Test_loss:1.086334
Epoch:14, Train_acc:65.6%, Train_loss:0.979645, Test_acc:62.9%, Test_loss:1.059501
Epoch:15, Train_acc:67.3%, Train_loss:0.937651, Test_acc:64.0%, Test_loss:1.049727
Epoch:16, Train_acc:68.8%, Train_loss:0.901698, Test_acc:62.8%, Test_loss:1.075939
Epoch:17, Train_acc:69.9%, Train_loss:0.866459, Test_acc:66.4%, Test_loss:0.984569
Epoch:18, Train_acc:71.1%, Train_loss:0.833676, Test_acc:65.4%, Test_loss:0.987956
Epoch:19, Train_acc:72.2%, Train_loss:0.799225, Test_acc:68.2%, Test_loss:0.921538
Epoch:20, Train_acc:73.4%, Train_loss:0.766214, Test_acc:67.9%, Test_loss:0.936557
Done

在这里插入图片描述

Ⅲ Ⅲ Conclusion:
  1. 知识点归纳:
  • 优化器及主要接口总结:
    • step 方法:
      • step 方法是优化器对象的一个方法,用于更新模型参数
      • 在训练过程中,首先进行前向传播计算损失,然后调用 backward 方法进行反向传播计算梯度,最后调用优化器的 step 方法来更新模型参数
      • step 方法根据优化算法(如 SGD、Adam 等)和学习率等参数,以及计算得到的梯度来更新模型参数。
    • backward 方法
      • backward 方法是张量对象的一个方法,用于执行反向传播计算梯度。
      • 在模型训练过程中,首先进行前向传播计算损失,然后调用 backward 方法执行反向传播,计算损失对模型参数的梯度
      • backward 方法会自动计算损失函数关于模型参数的梯度,并将梯度存储在对应的张量对象的 grad 属性中。
    • zero_grad 方法:
      • zero_grad 方法是优化器对象的一个方法,用于清空模型参数的梯度
      • 在每一轮训练开始之前,通常会调用优化器的 zero_grad 方法,将模型参数的梯度清零
      • 这样做是为了避免模型参数的梯度在多次反向传播计算中累积,确保每一轮训练都是基于当前样本计算的梯度
  • model.train()与model.eval():
    • model.train() 方法:
      • model.train() 方法用于将模型设置为训练模式
      • 在模型训练阶段调用 model.train() 方法,会启用模型中包含 Dropout 层和 Batch Normalization 层等具有随机性质的层,以及对输入数据进行数据增强等操作。
      • 在调用 model.train() 方法后,模型会保持处于训练模式,直到调用 model.eval() 方法将其设置为评估模式。
    • model.eval() 方法:
      • model.eval() 方法用于将模型设置为评估模式。
      • 在模型评估或推理阶段调用 model.eval() 方法,会关闭模型中包含 Dropout 层和 Batch Normalization 层等具有随机性质的层,以及停止对输入数据进行数据增强等操作。
      • 在调用 model.eval() 方法后,模型会保持处于评估模式,直到调用 model.train() 方法将其设置为训练模式。
  1. 收获与总结:

CIFAR10 数据集是一个常用的图像分类数据集,包含 10 类共 60000 张彩色图片。实验的目标是通过构建 CNN 模型对 CIFAR10 数据集中的图片进行分类识别。
实验涉及到数据集的准备、模型构建、训练、评估和结果分析等多个步骤。

CNN 网络的学习理解:CNN 是一种前馈神经网络,广泛应用于图像识别和计算机视觉领域。CNN 的核心是卷积层和池化层,通过局部感知和参数共享来提取图像特征。大致了解到卷积层利用卷积操作提取特征,包括滤波器的定义、特征图的计算等。池化层通过降采样来减少计算量,包括最大池化和平均池化等。

卷积池化的推导:卷积操作是将滤波器与输入图像进行卷积运算,通过滑动窗口计算特征图。池化操作是将特征图进行降采样,常用的池化方式包括最大池化和平均池化。卷积层和池化层的推导涉及到局部感知、参数共享和降采样等概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值