深度学习基本概念

  1. 无监督学习算法(unsupervised learning algorithm)训练含有很多特征的数据 集,然后学习出这个数据集上有用的结构性质。
    监督学习算法(supervised learning algorithm)训练含有很多特征的数据集,不 过数据集中的样本都有一个 标签(label)或 目标(target)。
  2. 测试集(test set)
  3. 度量模型性能的一种方法是计算模型在测试集上的 均方误差(mean squared error)MSE
    11.线性回归(linear regression)
  4. 在先前未观测到的输入上表现良好的能力被称为 泛化(generalization)。
  5. 训练集和测试集数据通过数据集上被称为 数据生成过程(data generating process)的概率分布生成。
  6. 欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训 练误差和和测试误差之间的差距太大。
  7. 通俗地,模型的容量是指其拟合各种函数的能力。
  8. 统计学习理论提供了量化模型容量的不同方法。在这些中,最有名的是 VapnikChervonenkis 维度(Vapnik-Chervonenkis dimension, VC)。VC维度量二元分类 器的容量。VC维定义为该分类器能够分类的训练样本的最大数目。
  9. 最近邻回归(nearest neighbor regression)
  10. 机器学习的 没有免费午餐定理(no free lunch theorem)表明 (Wolpert, 1996),在所有可能的数据生成分布上平均之后,每 一个分类算法在未事先观测的点上都有相同的错误率。换言之,在某种意义上,没 有一个机器学习算法总是比其他的要好。
  11. 正则化是指我们 修改学习算法,使其降低泛化误差而非训练误差。
  12. 估计的偏差被定义为:
  13. 估计量的 方差(variance)就是一个方差 ,其中随机变量是训练集。另外,方差的平方根被称为 标准差(standard error),记作 在这里插入图片描述
  14. 均方误差(mean squared error, MSE)在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值