Bounding Box Regression超详解(全站最全汇总版)综合各个途径文档 看这一篇就够了 解决你所有疑惑

本文深入解析BoundingBoxRegression原理,包括为何需要边框回归、其具体含义、实现细节等,并探讨了为何使用相对坐标差及宽高比取对数的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文从问题的角度出发,手把手带你拆解公式,让你彻底搞懂Bounding Box Regression😁



0.回顾一下RCNN

大家一般都是从RCNN开始了解Bounding Box Regression的,所以这里简单回顾一下RCNN
RCNN算法流程可分为4步:
1.一整图像生成1K~2K个候选区域(使用Selective Search方法)
2.对每个候选框区域使用深度网络提取特征
3.特征送入每一类的SVM分类器,判别是否属于该类
4.使用回归器精细修正候选框位置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述


这里我要说的就是RCNN的第四步,即“边界框回归
主要围绕着这六个问题来解析Bounding Box Regression:

  • 1.为什么要边框回归?
  • 2.什么是边框回归?
  • 3.边框回归细节
  • 4.为什么使用相对坐标差?
  • 5.为什么宽高比只能取对数?
  • 6.为什么IoU较大时边界框回归可视为线性变换?

1.为什么要边框回归?

在这里插入图片描述
对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。


2.边框回归是什么?

对于窗口一般使用四维向量 ( x , y , w , h ) (x,y,w,h) (x,y,w,h)来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口 G ^ \widehat{G} G
在这里插入图片描述
边框回归的目的是:给定 ( P x , P y , P w , P h ) 寻找一种映射 f ,使得 f ( P x , P y , P w , P h ) = ( G ^ x , G ^ y , G ^ w , G ^ h ) 边框回归的目的是:给定(P_x,P_y,P_w,P_h)寻找一种映射f,使得f(P_x,P_y,P_w,P_h)=(\widehat{G}_x,\widehat{G}_y,\widehat{G}_w,\widehat{G}_h) 边框回归的目的是:给定(Px,Py,Pw,Ph)寻找一种映射f,使得f(Px,Py,Pw,Ph)=(G x,G y,G w,G h) 并且 ( G ^ x , G ^ y , G ^ w , G ^ h ) ≈ ( G x , G y , G w , G h ) 并且(\widehat{G}_x,\widehat{G}_y,\widehat{G}_w,\widehat{G}_h)≈(G_x,G_y,G_w,G_h) 并且(G x,G y,G w,G h)(Gx,Gy,Gw,Gh)


3.边框回归细节

RCNN论文里指出,边界框回归是利用平移变换尺度变换来实现映射 。

平移变换 ( Δ x , Δ y ) 的计算公式如下: 平移变换(Δx,Δy) 的计算公式如下: 平移变换(Δx,Δy)的计算公式如下:
Δ x = P w d x ( P ) , Δ y = P h d y ( P ) Δx=P_wd_x(P),Δy=P_hd_y(P) Δx=Pwdx(P),Δy=Phdy(P)

G ^ x = P x + Δ x \widehat{G}_x=P_x+Δx G x=Px+Δx
G ^ y = P y + Δ y \widehat{G}_y=P_y+Δy G y=Py+Δy

尺度变换 ( Δ w , Δ h ) 的计算公式如下: 尺度变换(Δ_w,Δ_h)的计算公式如下: 尺度变换(Δw,Δh)的计算公式如下:
Δ w = e ( d w ( P ) ) , Δ h = e ( d h ( P ) ) , Δ_w=e^{(d_w(P))},Δ_h=e^{(d_h(P))}, Δw=e(dw(P)),Δh=e(dh(P)),
G ^ w = P w ∗ Δ w \widehat{G}_w=P_w∗Δw G w=PwΔw
G ^ h = P h ∗ Δ h \widehat{G}_h=P_h∗Δh G h=PhΔh

这样我们就得到了变换的一般形式:
G ^ x = P x + P w d x ( P ) \widehat{G}_x=P_x+P_wd_x(P) G x=Px+Pwdx(P)

G ^ y = P y + P h d y ( P ) \widehat{G}_y=P_y+P_hd_y(P) G y=Py+Phdy(P)

G ^ w = P w ∗ e d w ( P ) \widehat{G}_w=P_w∗e^{dw(P)} G w=Pwedw(P)

G ^ h = P h ∗ e d h ( P ) \widehat{G}_h=P_h∗e^{dh(P)} G h=Phedh(P)

− − − − − − − − − − − − − − − − − − − -------------------

G x = P x + P w t x ( P ) G_x=P_x+P_wt_x(P) Gx=Px+Pwtx(P)

G y = P y + P h t y ( P ) G_y=P_y+P_ht_y(P) Gy=Py+Phty(P)

G w = P w ∗ e t w ( P ) G_w=P_w∗e^{tw(P)} Gw=Pwetw(P)

G h = P h ∗ e t h ( P ) G_h=P_h∗e^{th(P)} Gh=Pheth(P)

也就是说,一个 d 对应着一个 t ,用 i 表示一张图片的序号: 也就是说,一个d对应着一个t,用i表示一张图片的序号: 也就是说,一个d对应着一个t,用i表示一张图片的序号:
d i → t i d_i→t_i diti
下一步就是设计算法得到这个映射 → 使 d 无限接近 t 下一步就是设计算法得到这个映射→使d无限接近t 下一步就是设计算法得到这个映射使d无限接近t

根据上述公式可以推导出 t ∗ 根据上述公式可以推导出t* 根据上述公式可以推导出t
请添加图片描述

注意:当输入的Proposal 与 Ground Truth 相差较小时(RCNN设置的是IOU>0.6)可以认为这种变换是一种线性变换,那么我们就可以用线性回归模型对窗口进行微调,只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟Ground Truth离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。
那么什么是线性回归?
线性回归就是给定输入的特征向量 X, 学习一组参数 W, 使得经过线性回归后的值跟真实值 Y(Ground Truth)非常接近.,即Y≈WX

那么这个映射关系中我们的输入以及输出分别是什么呢?

输入 R e g i o n P r o p o s a l 的 → P = ( P x , P y , P w , P h ) Region Proposal的→P=(P_x,P_y,P_w,P_h) RegionProposalP=(Px,Py,Pw,Ph)

输入的就是这四个数值吗?不!其实真正输入的是这个窗口对应的CNN特征,也就是R-CNN中的第五个池化层得到的特征向量 Φ 5 ( P ) Φ_5(P) Φ5(P),我们还要定义一个权重矩阵w*(*表示x,y,w,h,也就是每一个变换对应一个目标函数)来表示这个目标函数 d ∗ ( P ) = w ∗ T Φ 5 ( P ) d*(P) = w*^TΦ_5(P) d(P)=wTΦ5(P)

d ∗ ( P ) d*(P) d(P)是得到的预测值。我们要让预测值跟真实值 t ∗ = ( t x , t y , t w , t h ) t* =(t_x,t_y,t_w,t_h) t=(tx,ty,tw,th)差距最小,得到损失函数为:
请添加图片描述

接下来就是找到这个参数 w w w使损失函数最小:
请添加图片描述
利用梯度下降法或者最小二乘法就可以得到 W ∗ W* W
最后一项是一个惩罚项,为了防止过拟合
在RCNN中,边界框回归要设计4个不同的Ridge回归模型分别求解 W x , W y , W w , W h W_x,W_y,W_w,W_h WxWyWwWh

输出 d x ( P ) , d y ( P ) , d w ( P ) , d h ( P ) d_x(P),d_y(P),d_w(P),d_h(P) dx(P),dy(P),dw(P),dh(P)

有了这四个变换我们就可以通过上面的公式得到 G r o u n d T r u t h , Ground Truth, GroundTruth
注意,根据上面4个公式我们可以知道,P经过 d x ( P ) , d y ( P ) , d w ( P ) , d h ( P ) d_x(P),d_y(P),d_w(P),d_h(P) dx(P),dy(P),dw(P),dh(P),得到的并不是真实值G,
而是预测的 G ^ \hat{G} G^

测试阶段
根据 3 我们学习到回归参数,对于测试图像,我们首先经过 C N N 提取特征 Φ 5 ( P ) , 根据3我们学习到回归参数,对于测试图像,我们首先经过 CNN 提取特征Φ_5(P) , 根据3我们学习到回归参数,对于测试图像,我们首先经过CNN提取特征Φ5(P)
预测的变化就是 d ∗ ( P ) = W ∗ T Φ 5 ( P ) ,最后根据公式对窗口进行回归 预测的变化就是 d*(P) = W*^TΦ_5(P),最后根据公式对窗口进行回归 预测的变化就是d(P)=WTΦ5(P),最后根据公式对窗口进行回归


4.为什么使用相对坐标差?

一句话概括:进行尺度归一化。 一句话概括:进行尺度归一化。 一句话概括:进行尺度归一化。
在这里插入图片描述
在这里插入图片描述


5.式(4)为什么宽高比要取对数(为什么不直接使用宽高比值来作为目标进行学习)?

一句话概括:保证缩放尺度的非负性。 一句话概括:保证缩放尺度的非负性。 一句话概括:保证缩放尺度的非负性。
要得到一个放缩的尺度,这里必须限制尺度大于0。那么,我们学习的 t w , t h t_w , t_h tw,th
怎么保证满足大0呢?
最直观的想法就是引入EXP函数,如公式(4)所示,那么反过来推导就是Log函数的来源了。


6.为什么IoU较大时边界框回归可视为线性变换?

在这里插入图片描述


本文参考多篇文章、视频、论文、汇总而成
关于RCNN中Bounding-box regression的个人理解
CSDN
CSDn
知乎
BiliBili

有问题欢迎大家指正,如果感觉有帮助的话请点赞支持下👍📖🌟

### 支持向量机 (SVM) 与边界框回归器的关系 支持向量机(SVM)主要用于解决分类问题,而边界框回归器则用于目标检测任务中的位置精修。两者虽然主要用途不同,在某些计算机视觉任务中却能协同工作。 #### 边界框回归的作用机制 在对象检测框架内,边界框回归负责修正候选区域的位置和大小,使得这些候选区域能更加精确地包围住目标物体。这一过程可以通过最小化真实边界框与预测边界框之间的差异来完成[^4]。 #### SVM 的角色转换:从分类到定位辅助 尽管传统上认为SVM是二元或多元分类算法,但在一些高级应用场合下也可以被用来帮助改进边界框的质量。具体来说: - **多类别的区分能力**:当面对多个类别时,训练一组一对余(one-vs-rest)或多对一(multi-class)的支持向量机会增强整个系统的识别精度。 - **特征提取工具**:对于那些难以直接定义边界的实例,可以先利用SVM作为预处理器来进行初步筛选或者特征降维操作,然后再交给专门设计好的边界框回归模块做进一步优化处理[^3]。 ```python from sklearn import svm import numpy as np # 假设X_train, y_train已经准备好 clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train) def predict_and_adjust_bbox(image_features, initial_bboxes): predictions = clf.predict(image_features) adjusted_bboxes = [] for i in range(len(predictions)): # 使用预测结果调整初始边界框 adjustment_vector = compute_adjustment_vector(initial_bboxes[i], image_features[i]) final_bbox = apply_adjustment_to_bbox(initial_bboxes[i], adjustment_vector) adjusted_bboxes.append(final_bbox) return adjusted_bboxes ``` 此代码片段展示了如何结合SVM和支持向量回归的思想来构建一个简单的边界框微调流程。这里`compute_adjustment_vector()` 和 `apply_adjustment_to_bbox()` 函数代表了具体的实现细节,它们可以根据实际情况定制开发[^2]。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值