即插即用篇 | YOLOv8 引入Super Token Sampling ViT | 《CVPR 2023 最新论文》

该博客介绍了如何在YOLOv8中整合Super Token Sampling Vision Transformer(STViT),以提高计算机视觉任务的性能。STViT通过超级标记注意力(STA)机制,实现了高效全局上下文建模,减少了自注意力中的标记数量。文章提供了详细的步骤,指导读者如何在检测、分割和关键点任务中应用这一技术,以及在分类任务上的应用。

在这里插入图片描述

在这里插入图片描述
论文地址:https://arxiv.org/abs/2211.11167
代码地址:https://github.com/hhb072/STViT

视觉变换器已经在许多视觉任务中取得了令人印象深刻的性能。然而,它在捕捉浅层的局部特征时可能会受到高度冗余的影响。因此,引入了局部自注意力或早期卷积,这些方法牺牲了捕捉长距离依赖性的能力。这引发了一个挑战:我们是否可以在神经网络的早期阶段实现高效且有效的全局上下文建模?为解决这个问题,我们从超像素的设计中汲取灵感,超像素可以减少后续处理中的图像基元数量,并将超级标记引入视觉变换器。超级标记试图提供视觉内容的语义有意义的分割,从而减少自注意中的标记数量,同时保留全局建模。具体而言,我们提出了一个简单而强大的超级标记注意力(STA)机制,包括三个步骤:首先通过稀疏关联学习从视觉标记中抽样超级标记,然后对超级标记执行自注意力,最后将它们映射回原始标

### 实现YOLOv8中的动态特性 YOLOv8 是一种先进的目标检测框架,支持多种配置选项以适应不同场景的需求。为了实现动态特性(dynamic features),可以考虑以下几个方面: #### 1. 动态输入尺寸 YOLOv8 支持动态调整输入图像的分辨率,这可以通过修改训练和推理阶段的相关参数来完成。例如,在 Ultralytics 的官方文档中提到,通过设置 `imgsz` 参数为不同的值,可以在运行时改变模型处理的图像大小[^5]。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练模型 results = model.predict(source='image.jpg', imgsz=640) # 设置动态输入尺寸为 640x640 ``` #### 2. 动态批量处理 在实际应用中,可能需要根据硬件资源的变化动态调整批处理大小(batch size)。YOLOv8 提供了灵活的 API 来控制这一点。例如,通过命令行工具或 Python 脚本指定 `--batch-size` 或者 `batch` 参数即可实现动态批量处理[^6]。 ```bash yolo train data=coco128.yaml model=yolov8n.pt epochs=100 batch=16 ``` #### 3. 集成外部动态库存管理 如果希望进一步扩展 YOLOv8 的功能,使其能够与动态环境交互,则可借鉴 Ansible 中关于 **Dynamic Inventory** 的设计理念[^1]。具体来说,可以通过编写自定义脚本来实时获取并更新数据源信息,从而让模型始终处于最新状态。 #### 4. 多模态融合增强 对于某些复杂任务而言,单纯依靠视觉信息可能不足以满足需求。此时可以尝试引入多模态学习技术,利用类似于 Transformer-based networks 的架构来进行跨模态特征提取与融合[^3]。以下是简化版代码示例: ```python import torch from transformers import BertModel class MultiModalFusion(torch.nn.Module): def __init__(self, text_encoder=BertModel.from_pretrained("bert-base-uncased")): super().__init__() self.text_encoder = text_encoder def forward(self, texts, images): text_features = self.text_encoder(texts).last_hidden_state[:, 0, :] # CLS token image_features = ... # 假设已存在图片编码逻辑 fused_representation = torch.cat([text_features, image_features], dim=-1) return fused_representation ``` #### 5. 容器化部署下的水平伸缩能力提升 当面对大规模分布式计算场景时,合理规划容器编排策略显得尤为重要。正如 Docker 文档所描述那样,借助诸如 Kubernetes 等高级工具可以帮助我们轻松达成这一目标[^4]。下面展示了一个简单的 docker-compose.yml 文件片段作为参考: ```yaml version: '3' services: yolov8-service: image: custom/yolov8-image:v1.0 deploy: replicas: 3 restart_policy: condition: on-failure ports: - "8080:80" environment: - IMG_SIZE=640 ``` ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值