YOLOv8改进-bifpn

本文介绍了BiFPN在YOLOv8中的应用,旨在提升目标检测性能。BiFPN是一种改进的特征金字塔网络,通过双向加权融合,解决了传统FPN在不同尺度特征融合时的权重不平等问题,从而更好地结合低层细节和高层语义信息。文章详细讲解了BiFPN的结构和优势,并展示了在YOLOv8中如何实施这些改进,包括在conv层的改动、配置文件的更新等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. BiFPN论文简介论文《EfficientDet: Scalable and Efficient Object Detection》地址:https://arxiv.org/abs/1911.09070

1.1 FPN是什么

1.2 FPN包括哪些部分

1.3 FPN特征融合的思想

1.4 BiFPN解读

2.YOLOv8改进

2.1  conv中加入

2.2 修改init.py

修改task  注册bifpn

2.3 配置yaml文件


1. BiFPN论文简介
论文《EfficientDet: Scalable and Efficient Object Detection》地址:https://arxiv.org/abs/1911.09070

BiFPN 全称 Bidirectional Feature Pyramid Network 加权双向(自顶向下 + 自低向上)特征金字塔网络。

加入BIFPN加权双向金字塔结构,提升不同尺度的检测效果。

1.1 FPN是什么

FPN,Feature Pyramid Networks,特征金字塔网络。用来处理多尺度(不同大小)物体检测问题。

### YOLOv8改进 BiFPN 结构的方法 #### 修改配置文件 为了在YOLOv8中集成BiFPN结构,需要调整模型的配置文件。具体来说,复制`ultralytics/cfg/models/v8/yolov8.yaml`下的`yolov8.yaml`文件至同一级别的新目录`my_v8`内,并重命名为`yolov8-bifpn.yaml`[^4]。 在此新的配置文件中,应引入跳级连接以及加权特征融合机制来构建完整的BiFPN架构。这涉及到对原有网络层定义做出相应改动,确保能够支持双向(自底向上和自顶向下)的信息传递路径[^3]。 ```yaml # 示例:部分修改后的 yolov8-bifpn.yaml 文件片段 backbone: - [focus, [64], [[0]]] ... neck: # 新增 neck 部分用于实现 BIFPN - [bifpn, [256], [[-1, ...]]] # 这里省略了一些细节参数设置 ... head: - [detect, [...]] ``` #### 创建模块代码 除了更新配置外,还需编写具体的Python类或函数以实际搭建起BiFPN组件。通常是在项目源码树中的适当位置新增一个`.py`文件作为此功能模块入口点。 该模块负责处理多尺度输入张量间的交互操作,比如通过卷积运算完成不同分辨率下特征图之间的转换工作;同时还要考虑权重分配策略以便更好地平衡各分支贡献度。 ```python from torch import nn import torch.nn.functional as F class BiFPN(nn.Module): """Bidirectional Feature Pyramid Network""" def __init__(self, num_channels=256, epsilon=1e-4): super(BiFPN, self).__init__() # 初始化必要的子模块... def forward(self, inputs): """ Args: inputs (list[Tensor]): Input feature maps at different levels. Returns: list[Tensor]: Processed outputs after applying bidirectional connections. """ # 实现前向传播逻辑... pass ``` #### 替换任务执行脚本 最后一步是要让整个训练流程识别并调用上述定制化部件。这意味着要编辑像`tasks.py`这样的核心控制程序,使得其能够在初始化阶段加载指定版本的检测器实例——即带有增强型颈部设计的新版YOLOv8模型[^1]。 这样做不仅有助于验证所做更改的有效性,而且也为后续进一步优化提供了便利条件。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值