LCIS 线性DP O(N^2)

AC通道

这个算法是对O(N^3)进行了一个优化,如果O(N^3)你不会,OK,点这里

思路:

我们的转移方程与O(N^3)一模一样,但是还有可以优化的空间

先把O(N^3)的方程列出来

for (int i = 1; i <= n; i++){
	for (int j = 1; j <= n; j++){
		if(a[i] == b[j]){
			for (int k = 0; k < j; k++){
				/*
				 这个位置不从 k = 1开始的原因是
				 k = 0的情况就是前面没有构成的情况,不能省略 
				 */ 
				if(b[k] < b[j])dp[i][j] = max(dp[i][j], dp[i - 1][k] + 1);
			}
		}
		else dp[i][j] = dp[i - 1][j];
	}
}

观察发现,当内层循环 j 的时候,外层的 i 没有发生变化,但是遇到a[ i ] == b[ j ]时,需要枚举 j 前面最大的dp[ i - 1] [ k ],因此可以用一个变量临时的记录前面的最大的dp[ i - 1] [ j ],下次用到的时候直接计算,计算过程中一边更新就可以省略掉一个循环(即使下面需要用到b[ k ] < b[ j ]但是不要忘了,a[ i ] == b[ j ])

定义变量 val 初始为0,如果一开始b[ 0 ]就满足b [ 0 ] < a[ i ],val 的初始值就应该是dp[ i - 1][ 0 ](前i - 1个以0结尾的最大长度)

遇到a[ i ] == b[ j ]时,判断当前b[ j ]是否大于 val,如果大于,dp[ i ] [ j ] = val  + 1,否则dp[ i ] [ j ] = dp[ i - 1] [ j ];

val 其实是 j 前面小于 b[ j ](即a[ i ])最大的一个,如果满足条件 b[ j ] < a[ i ],则更新 val  = max(val, dp[i - 1[ j ]);

状态转移代码:

for (int i = 1; i <= n; i++){
	int val = 0;
	if(b[0] < a[i])val = dp[i - 1][0];
	for (int j = 1; j <= n; j++){
		if(a[i] == b[j])dp[i][j] = val + 1;
		else dp[i][j] = dp[i - 1][j];
		if(b[j] < a[i])val = max(val, dp[i - 1][j]);
	}
}

完整代码

#include <bits/stdc++.h>
using namespace std;
const int N = 3010;
int a[N], b[N], dp[N][N], n;
template <class T>
bool read(T & a){
	a = 0;
	int flag = 0;
	char ch;
	if((ch = getchar()) == '-'){
		flag = 1;
	}
	else if(ch >= '0' && ch <= '9'){
		a = a * 10 + ch - '0';
	}
	while ((ch = getchar()) >= '0' && ch <= '9'){
		a = a * 10 + ch - '0';
	}
	if(flag)a = -a;
	return true;
}
template <class T, class ... R>
bool read(T & a, R & ... b){
	if(!read(a))return 0;
	read(b...);
}
template <class T>
bool out(T a){
	if(a < 0)putchar('-');
	if(a >= 10)out(a / 10);
	putchar(a % 10 + '0');
	return true;
}
template <class T, class ... R>
bool out(T a, R ... b){
	if(!out(a))return 0;
	out(b...);
}
int main()
{
	read(n);
	for (int i = 1; i <= n; i++)read(a[i]);
	for (int i = 1; i <= n; i++)read(b[i]);
	for (int i = 1; i <= n; i++){
		int val = 0;
		if(b[0] < a[i])val = dp[i - 1][0];
		for (int j = 1; j <= n; j++){
			if(a[i] == b[j])dp[i][j] = val + 1;
			else dp[i][j] = dp[i - 1][j];
			if(b[j] < a[i])val = max(val, dp[i - 1][j]);
		}
	}
	int res = 0;
	for (int i = 1; i <= n; i++)res = max(res, dp[n][i]);
	printf("%d\n", res);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值