代码地址:mind3d: mindspore 3D toolkit developed by 3D Lab of Southeast University
目录
KPS(K-Closest Points Sampling)
背景
点云目标检测
在3D点云目标检测领域,对于数据输入的处理一般有三种:
多视角
将三维点云投射到多个二维平面形成图像
体素
将三维点云切割成多个小块,这些小块就叫体素,类似像素。这是最自然的一种想法,正如像素通过规律排列形成二维图像,体素也是通过规律排列形成三维体的,并且可以使用3D卷积像图像一样进行操作。
点云
直接输入点云数据(N,D),N是点云文件中点的数量,一般在万级,D则是特征维度,一般是x,y,z加一个强度,也就是4维。
点云目标检测是一种用于在三维点云数据中识别目标的任务。这种任务通常用于机器人、汽车、无人机等自动化系统,帮助它们在环境中识别并避开障碍物。
点云目标检测方法通常是将三维点云数据转换为二维图像或三维模型,然后使用计算机视觉方法(如卷积神经网络)来识别目标。一些方法还使用更高维度的表示,如欧几里得空间或高斯混合模型,来更好地处理点云数据的结构信息。
点云目标检测的挑战在于,三维点云数据通常是稠密的且有噪声,而且目标的形状和尺寸通常不一致。因此,点云目标检测方法需要考虑这些因素,并提供较高的精度和可靠性。