非线性非高斯模型的改进粒子滤波算法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

由于红外、被动声纳等被动传感器具有隐蔽性好、抗干扰性强等特点,因此在现代战争中纯方位跟踪有着广泛的应用前景,吸引了许多学者进行研究。但是,纯方位跟踪又是跟踪问题的一个难点,主要是因为同主动跟踪问题相比,纯方位跟踪具有不可观测性,滤波非线性等特点。目前,针对纯方位跟踪研究多采用局部线性化的近似方法。扩展卡尔曼滤波( EKF) 是比较普遍适用的算法,此算法仅利用非线性函数 Taylor 展开的一阶项,只适用于弱非线性系统,在缺少距

离量测信息的条件下容易引起滤波的不稳定,甚至发散; 对于强非线性系统,不敏卡尔曼滤波( UKF) 有更 好的滤波效果,但是 UKF 和 EKF 都是在基于模型线性化和高斯假设的条件下,不适用于非高斯分布的模型。在处理非线性非高斯问题时,一种基于贝叶斯原理的序贯蒙特卡罗粒子滤波器表现出明显的优势[4-5]。在 用粒子滤波进行被动传感器目标跟踪时,其跟踪精度

主要取决于两个方面[5]: 一是采样得到的粒子分布是 否合理,能不能尽可能接近真实状态的后验概率分布。对这方面的研究主要通过选择好的重要性密度函数和在递推过程中克服权值退化和样本贫化问题Payne、Marron 等学者相继利用 EKF 和 UKF 产生建议分布对传统粒子滤波进行改进[6-7]。但是,在非高斯噪声或者过程噪声较大的情况下容易出现滤波发散; 文献[8]提出一种基于 EM 的高斯和粒子滤波算法,该算法通过 EM 产生量测更新过程中的加权粒子集来重新获得

后验状态密度,改善了粒子枯竭问题。但由于 EM 算法假定混合成分数为已知、迭代的结果需要依赖初始值、可能收敛到局部最大点或参数空间的边界,导致滤波过程后验状态密度估计误差增大,影响滤波精度。二是粒子滤波权值计算准确与否。粒子权值的大小代表状态在该粒子位置可能性的大小。当观测噪声突然增大时,粒子权值将会产生较大偏差。

📚2 运行结果

 

 部分代码:

 %重要性权值计算
        for i=1:N
            zPred_pf(:,t,i)=feval('hfun',XparticlePred_pf(:,t,i),x0,y0);
            weight(t,i)=(1-eta)*inv(sqrt(2*pi*det(R1)))*exp(-.5*(Z(:,t)...
                -zPred_pf(:,t,i))'*inv(R1)*(Z(:,t)-zPred_pf(:,t,i)))...
                +eta*inv(sqrt(2*pi*det(R2)))*exp(-.5*(Z(:,t)-...
                zPred_pf(:,t,i))'*inv(R2)*(Z(:,t)-zPred_pf(:,t,i)))...
                + 1e-99; %权值计算,为避免权值为0,用1e-99
        end
        weight(t,:)=weight(t,:)./sum(weight(t,:));%归一化权值
        outIndex = randomR(1:N,weight(t,:)');     %随机采样
        Xparticle_pf(:,t,:) = XparticlePred_pf(:,t,outIndex);%获取新采样值
        %状态估计
        mx=mean(Xparticle_pf(1,t,:));
        my=mean(Xparticle_pf(3,t,:));
        mvx=mean(Xparticle_pf(2,t,:));
        mvy=mean(Xparticle_pf(4,t,:));
        Xmean_pf(j,:,t)=[mx,mvx,my,mvy]';

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周航,冯新喜,王蓉.非线性非高斯模型的改进粒子滤波算法[J].信号处理,2012,28(09):1327-1334.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 粒子滤波算法是一种基于蒙特卡罗模拟的参数滤波方法,它可以用来对一系列线性、高斯的状态空间模型进行滤波、平滑和估计。它的核心思想是通过一组样本粒子来近似表示系统的概率密度函数,从而对未知状态进行确定。 Matlab中可以通过以下代码实现粒子滤波算法: 1. 定义状态方程和观测方程 在使用粒子滤波算法前,首先需要定义状态方程和观测方程,它们分别描述了系统的状态演化和测量模型。 2. 初始化粒子群并加权 在初始化过程中,需要设定粒子的个数和每个粒子的初始状态,同时为每个粒子分配一个权重,用来表示其重要性。 3. 重采样 在每个时间步长中,根据预测模型和观测数据,对每个粒子进行状态更新,并重新计算其权重。在此基础上,进行一次重采样,即按照权重大小重新抽样,使得重要性高的粒子得以保留,而权重低的粒子被剔除。 4. 更新状态估计值 根据粒子群的最新状态信息,可以计算出当前时间步长的状态估计值,并将其作为下一个时间步长的先验概率密度函数。 5. 重复执行步骤3-4直至结束,得到最终状态估计结果。 以上就是粒子滤波算法Matlab实现流程。在实际应用中,还需要针对具体问题进行一系列参数的调整和优化,以达到更好的估计效果。 ### 回答2: 粒子滤波算法是一种基于蒙特卡罗模拟的参数递归滤波算法,主要用于处理线性、高斯系统的滤波问题,被广泛应用于机器人导航、目标跟踪、图像处理等领域。Matlab是一种常用的科学计算软件,可用于编写粒子滤波算法的相关代码粒子滤波算法的核心思想是通过对状态空间进行随机抽样,用一些粒子来代表系统的状态,并基于粒子重要性权重对状态进行近似估计和更新。Matlab实现粒子滤波算法的步骤如下: 1. 初始化粒子集合,并赋予每个粒子一个初始状态和重要性权重。 2. 根据系统的动态方程和噪声模型,对每个粒子进行状态预测。 3. 根据观测数据和噪声模型,对每个粒子的重要性权重进行更新。 4. 根据更新后的重要性权重,对粒子集合进行重采样,保持一定数量的粒子。 5. 根据重采样后的粒子集合,对状态进行估计和预测,得到滤波结果。 下面给出一个简单的粒子滤波算法Matlab代码示例: function [state, particles] = particleFilter(data, init_state, num_particles, dt, process_noise, obs_noise) % data: 输入的观测数据,可以是一个向量或二维数组 % init_state: 初始状态,可以是一个向量或二维数组 % num_particles: 粒子数量 % dt: 时间步长 % process_noise: 系统噪声标准差 % obs_noise: 观测噪声标准差 % state: 状态估计结果 % particles: 粒子集合 % 初始化粒子集合 particles = repmat(init_state, 1, num_particles) + randn(size(init_state, 1), num_particles) * process_noise; % 遍历观测数据,依次进行状态预测、更新、重采样 for i = 1:size(data, 2) % 状态预测 particles = processModel(particles, dt, process_noise); % 更新重要性权重 weights = obsModel(data(:,i), particles, obs_noise); % 重采样 particles = resampling(particles, weights); end % 对粒子集合进行加权平均,得到状态估计结果 state = mean(particles, 2); % 状态预测函数 function particles = processModel(particles, dt, process_noise) % 粒子数量 num_particles = size(particles, 2); % 随机过程噪声(高斯分布) process_noise = randn(size(particles)) * process_noise; % 状态预测 particles = particles + dt .* [cos(particles(3,:)); sin(particles(3,:)); zeros(1,num_particles)] + process_noise; % 观测函数 function weights = obsModel(data, particles, obs_noise) % 粒子数量 num_particles = size(particles, 2); % 观测噪声(高斯分布) obs_noise = randn(size(particles)) * obs_noise; % 计算观测模型 obs_model = [cos(particles(3,:)); sin(particles(3,:)); zeros(1,num_particles)]; % 计算重要性权重 errors = obs_model - repmat(data, 1, num_particles); sq_errors = sum(errors .* errors, 1); weights = exp(-sq_errors ./ (2 * obs_noise^2)); % 重采样函数 function particles = resampling(particles, weights) % 粒子数量 num_particles = size(particles, 2); % 归一化重要性权重 normalized_weights = weights ./ sum(weights); % 计算样本分布函数 cdf = cumsum(normalized_weights); % 生成随机采样点 samples = (rand + (0:num_particles-1)) ./ num_particles; % 重采样 new_particles = zeros(size(particles)); for i = 1:num_particles idx = find(cdf >= samples(i), 1, 'first'); new_particles(:,i) = particles(:,idx); end particles = new_particles; 以上代码仅用于说明粒子滤波算法的基本原理和实现方式,实际应用中还需要根据具体问题进行调整和改进。 ### 回答3: 粒子滤波是一种基于蒙特卡罗方法的线性滤波算法,在目标跟踪、机器人定位和导航等领域广泛应用。其主要思想是通过一组随机生成的粒子来表示后验分布,并通过不断的重采样和状态预测来逼近目标的真实状态。 在Matlab实现粒子滤波算法代码如下: 1. 初始化粒子集合并进行权重赋值 particles = rand(4, N) .* repmat([xrange; yrange; vxrange; vyrange], 1, N); weights = ones(1, N) / N; 2. 对每个粒子进行状态更新和权重调整 for i = 1:N particles(:,i) = motion_model(particles(:,i)); weights(i) = measurement_model(z, particles(:,i)); end 3. 进行重采样,以保证粒子分布逼近真实状态 [~, idx] = sort(rand(1,N)); cum_weights = cumsum(weights(idx)); new_particles = zeros(size(particles)); for i = 1:N r = rand; ind = find(cum_weights >= r, 1); new_particles(:,i) = particles(:,idx(ind)); end 4. 计算滤波结果 x_est = mean(new_particles(1,:)); y_est = mean(new_particles(2,:)); 其中,motion_model表示粒子更新模型,measurement_model表示测量模型,z为实际测量结果,N为粒子数目。通过不断迭代重复以上过程,粒子集合将逐步逼近目标的真实状态,从而实现有效的滤波效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值