【机器学习线性代数】13 提取主成分:矩阵的特征值分解

本文介绍了如何通过主成分分析(PCA)进行数据降维,重点讲解了PCA的思路和详细步骤。从期望与方差、协方差与协方差矩阵开始,解释了数据降维的需求背景和目标。通过实例展示了PCA如何消除特征之间的相关性,构造彼此无关的新特征,以及如何选择和取舍新特征。文章强调了PCA过程中信息损失的衡量和主成分的贡献率计算,最后讨论了PCA在多个特征降维场景下的推广。
摘要由CSDN通过智能技术生成

1.期望与方差

看到这个小标题,读者也许会想,这里不是在讲线性代数么,怎么感觉像是误入了概率统计的课堂?

这里我专门说明一下,在这一讲里,我们的最终目标是分析如何提取数据的主成分,如何对手头的数据进行降维,以便后续的进一步分析。往往问题的切入点就是数据各个维度之间的关系以及数据的整体分布。因此,我们有必要先花点功夫,来梳理一下如何对数据的整体分布情况进行描述。

首先大家知道,期望衡量的是一组变量 X X X取值分布的平均值,我们一般记作:

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石 溪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值