【机器学习线性代数】13 提取主成分:矩阵的特征值分解
最新推荐文章于 2021-11-17 14:18:21 发布
本文介绍了如何通过主成分分析(PCA)进行数据降维,重点讲解了PCA的思路和详细步骤。从期望与方差、协方差与协方差矩阵开始,解释了数据降维的需求背景和目标。通过实例展示了PCA如何消除特征之间的相关性,构造彼此无关的新特征,以及如何选择和取舍新特征。文章强调了PCA过程中信息损失的衡量和主成分的贡献率计算,最后讨论了PCA在多个特征降维场景下的推广。
摘要由CSDN通过智能技术生成