2.4 矩阵特征值分解与二次型

第二章 线性代数

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

2.4 矩阵特征值分解与二次型

  1. 特征值与特征向量

    A \boldsymbol{A} A n n n阶矩阵,若对实数 λ \lambda λ存在非零向量 α \boldsymbol\alpha α,使得 A α = λ α \boldsymbol{A}\boldsymbol\alpha=\lambda\boldsymbol\alpha Aα=λα,则称 λ \lambda λ A \boldsymbol{A} A的特征值, α \boldsymbol\alpha α A \boldsymbol{A} A的对应特征值 λ \lambda λ的特征向量。称 ∣ λ E − A ∣ |\lambda\boldsymbol{E}-\boldsymbol{A}| λEA A \boldsymbol{A} A的特征多项式, ∣ λ E − A ∣ = 0 |\lambda\boldsymbol{E}-\boldsymbol{A}|=0 λEA=0的全部解即为 A \boldsymbol{A} A的全部特征值。

    A \boldsymbol{A} A对角线元素之和称为迹,记作 t r ( A ) tr(\boldsymbol{A}) tr(A),且 t r ( A ) = λ 1 + ⋯ + λ n tr(\boldsymbol{A})=\lambda_1+\cdots+\lambda_n tr(A)=λ1++λn

  2. 矩阵的相似

    A , B \boldsymbol{A},\boldsymbol{B} A,B n n n阶矩阵,若存在可逆矩阵 P \boldsymbol{P} P,使得 P − 1 A P = B \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{B} P1AP=B,则称矩阵 A \boldsymbol{A} A B \boldsymbol{B} B相似。

    A \boldsymbol{A} A B \boldsymbol{B} B相似,则

    ( 1 ) ∣ λ E − A ∣ = ∣ λ E − B ∣ ( 2 ) ∣ A ∣ = ∣ B ∣ , t r ( A ) = t r ( B ) , R ( A ) = R ( B ) ( 3 ) A T 与 B T 相似 , A m 与 B m 相似 , f ( A ) 与 f ( B ) 相似 ( 4 ) 当 A 可逆时 , A − 1 与 B − 1 相似 , A ∗ 与 B ∗ 相似 \begin{aligned} &(1)|\lambda\boldsymbol{E}-\boldsymbol{A}|=|\lambda\boldsymbol{E}-\boldsymbol{B}|\\ &(2)|\boldsymbol{A}|=|\boldsymbol{B}|,tr(\boldsymbol{A})=tr(\boldsymbol{B}),R(\boldsymbol{A})=R(\boldsymbol{B})\\ &(3)\boldsymbol{A}^T与\boldsymbol{B}^T相似,\boldsymbol{A}^m与\boldsymbol{B}^m相似,f(\boldsymbol{A})与f(\boldsymbol{B})相似\\ &(4)当\boldsymbol{A}可逆时,\boldsymbol{A}^{-1}与\boldsymbol{B}^{-1}相似,\boldsymbol{A}^*与\boldsymbol{B}^*相似 \end{aligned} (1)λEA=λEB(2)A=B,tr(A)=tr(B),R(A)=R(B)(3)ATBT相似,AmBm相似,f(A)f(B)相似(4)A可逆时,A1B1相似,AB相似

  3. 矩阵可相似对角化的第一种充要条件

    n 阶矩阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量 n阶矩阵\boldsymbol{A}可相似对角化的充要条件是\boldsymbol{A}有n个线性无关的特征向量 n阶矩阵A可相似对角化的充要条件是An个线性无关的特征向量

    推论:若 n n n阶矩阵 A \boldsymbol{A} A n n n个不同的特征值,则必可相似对角化,反之不成立。

  4. 矩阵可相似对角化的第二种充要条件

    n n n阶矩阵 A \boldsymbol{A} A的不同特征值为 λ 1 , ⋯   , λ s \lambda_1,\cdots,\lambda_s λ1,,λs,其重数分别为 r 1 , ⋯   . r s r_1,\cdots.r_s r1,.rs,且 ∑ i = 1 s r i = n \sum\limits_{i=1}^sr_i=n i=1sri=n,则 A \boldsymbol{A} A可相似对角化的充要条件是对于每一个特征值 λ i \lambda_i λi R ( λ i E − A ) = n − r i R(\lambda_i\boldsymbol{E}-\boldsymbol{A})=n-r_i R(λiEA)=nri,即对应于特征值极大线性无关的特征向量的个数恰好等于其重数 r i ( i = 1 , ⋯   , s ) r_i(i=1,\cdots,s) ri(i=1,,s)

  5. 相似对角化的计算方法

    ( 1 ) 计算矩阵 A 的特征值 λ 1 , ⋯   , λ n ( 2 ) 计算对应特征值的对应特征向量 p 1 , ⋯   , p n ( 3 ) 记 P = [ p 1 , ⋯   , p n ] , 则 P − 1 A P = [ λ 1 ⋱ λ n ] \begin{aligned} &(1)计算矩阵\boldsymbol{A}的特征值\lambda_1,\cdots,\lambda_n\\ &(2)计算对应特征值的对应特征向量\boldsymbol{p}_1,\cdots,\boldsymbol{p}_n\\ &(3)记\boldsymbol{P}=[\boldsymbol{p}_1,\cdots,\boldsymbol{p}_n],则\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\begin{bmatrix}\lambda_1&&\\&\ddots\\&&\lambda_n\end{bmatrix} \end{aligned} (1)计算矩阵A的特征值λ1,,λn(2)计算对应特征值的对应特征向量p1,,pn(3)P=[p1,,pn],P1AP= λ1λn

  6. 向量的内积与正交性

    α = ( a 1 , ⋯   , a n ) T , β = ( b 1 , ⋯   , b n ) T \boldsymbol\alpha=(a_1,\cdots,a_n)^T,\boldsymbol\beta=(b_1,\cdots,b_n)^T α=(a1,,an)T,β=(b1,,bn)T,则记 α \boldsymbol\alpha α β \boldsymbol\beta β的内积为:

    ( α , β ) = α T β = β T α = a 1 b 1 + ⋯ + a n b n (\boldsymbol\alpha,\boldsymbol\beta)=\boldsymbol\alpha^T\boldsymbol\beta=\boldsymbol\beta^T\boldsymbol\alpha=a_1b_1+\cdots+a_nb_n (α,β)=αTβ=βTα=a1b1++anbn

    ( α , β ) = 0 (\boldsymbol\alpha,\boldsymbol\beta)=0 (α,β)=0,则称 α \boldsymbol\alpha α β \boldsymbol\beta β正交。

  7. S c h i m i d t Schimidt Schimidt正交化方法

    若有 n n n个线性无关的向量 α 1 , ⋯   , α n \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_n α1,,αn,则过程分为正交化和单位化

    正交化过程

    β k = α k − ∑ i = 1 k − 1 ( β i , α k ) ( β i , β i ) β i , k = 1 , ⋯   , n \boldsymbol\beta_k=\boldsymbol\alpha_k-\sum_{i=1}^{k-1}\frac{(\boldsymbol\beta_i,\boldsymbol\alpha_k)}{(\boldsymbol\beta_i,\boldsymbol\beta_i)}\boldsymbol\beta_i,\quad k=1,\cdots,n βk=αki=1k1(βi,βi)(βi,αk)βi,k=1,,n

    单位化过程

    η k = β k ∣ ∣ β k ∣ ∣ , k = 1 , ⋯   , n \boldsymbol{\eta}_k=\frac{\boldsymbol\beta_k}{||\boldsymbol\beta_k||},\quad k=1,\cdots,n ηk=∣∣βk∣∣βk,k=1,,n

    从而得到一组单位正交向量 η 1 ⋯   , η n \boldsymbol{\eta}_1\cdots,\boldsymbol{\eta}_n η1,ηn

  8. 正交矩阵

    A A T = E \boldsymbol{A}\boldsymbol{A}^T=\boldsymbol{E} AAT=E或者 A T = A − 1 \boldsymbol{A}^T=\boldsymbol{A}^{-1} AT=A1,则称矩阵 A \boldsymbol{A} A为正交矩阵。

  9. 实对称矩阵的正交相似对角化

    (1)实对称矩阵的特征值均为实数;

    (2)实对称矩阵对应不同特征值的特征向量相互正交;

    (3)实对称矩阵必定可以相似对角化;

    (4)若 A \boldsymbol{A} A n n n阶实对称矩阵,且特征值为 λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn,则存在正交矩阵 Q \boldsymbol{Q} Q,使得

    Q T A Q = [ λ 1 ⋱ λ n ] \boldsymbol{Q}^T\boldsymbol{A}\boldsymbol{Q}=\begin{bmatrix}\lambda_1&&\\&\ddots\\&&\lambda_n\end{bmatrix} QTAQ= λ1λn

    (5)若 A \boldsymbol{A} A B \boldsymbol{B} B均为 n n n阶实对称矩阵,则 A \boldsymbol{A} A B \boldsymbol{B} B相似的充要条件是 A \boldsymbol{A} A B \boldsymbol{B} B有相同的特征值。

  10. 二次型

    n n n个变量 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn的二次齐次实系数函数

    f ( x 1 , ⋯   , x n ) = ∑ i = 1 n a i i x i 2 + ∑ i < j n 2 a i j x i x j f(x_1,\cdots,x_n)=\sum_{i=1}^na_{ii}x_i^2+\sum_{i<j}^n2a_{ij}x_ix_j f(x1,,xn)=i=1naiixi2+i<jn2aijxixj

    称为 n n n元实二次型,可以表示为 X T A X \boldsymbol{X}^T\boldsymbol{A}\boldsymbol{X} XTAX,其中

    A = [ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ] , X = [ x 1 ⋮ x n ] \boldsymbol{A}=\begin{bmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn}\end{bmatrix},\boldsymbol{X}=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} A= a11an1a1nann ,X= x1xn

    a i j = a j i ( i , j = 1 , ⋯   , n ) a_{ij}=a_{ji}(i,j=1,\cdots,n) aij=aji(i,j=1,,n)

  11. 二次型的标准形与规范性

    若存在可逆矩阵 C \boldsymbol{C} C以及 X = C Y \boldsymbol{X}=\boldsymbol{C}\boldsymbol{Y} X=CY,使得

    f = X T A X = Y T [ k 1 ⋱ k n ] Y f=\boldsymbol{X}^T\boldsymbol{A}\boldsymbol{X}=\boldsymbol{Y}^T\begin{bmatrix}k_1&&\\&\ddots&\\&&k_n\end{bmatrix}\boldsymbol{Y} f=XTAX=YT k1kn Y

    则称 f = k 1 y 1 2 + ⋯ + k n y n 2 f=k_1y_1^2+\cdots+k_ny_n^2 f=k1y12++knyn2 f f f的标准形

    进一步,根据 k i k_i ki的正负号可写为 f = z 1 2 + ⋯ + z p 2 − z p + 1 2 − ⋯ − z r 2 f=z_1^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_r^2 f=z12++zp2zp+12zr2的形式,称为 f f f的规范形。

    其中 r r r f f f的秩, p p p f f f的正惯性指数, r − p r-p rp f f f的负惯性指数。

  12. 矩阵的相合

    A \boldsymbol{A} A B \boldsymbol{B} B n n n阶矩阵,若存在可逆矩阵 P \boldsymbol{P} P,使得 P T A P = B \boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}=\boldsymbol{B} PTAP=B,则称 A \boldsymbol{A} A B \boldsymbol{B} B相合。

    任何实对称矩阵 A \boldsymbol{A} A必和如下对角阵合同

    Λ = [ E p − E r − p O ] \Lambda=\begin{bmatrix}\boldsymbol{E}_p&&\\&-\boldsymbol{E}_{r-p}&\\&&\boldsymbol{O}\end{bmatrix} Λ= EpErpO

  13. 正定二次型与正定矩阵

    f = X T A X f=\boldsymbol{X}^T\boldsymbol{A}\boldsymbol{X} f=XTAX n n n元二次型,若对任意 n n n维维非零向量 α \boldsymbol\alpha α均有 α T A α > 0 \boldsymbol\alpha^T\boldsymbol{A}\boldsymbol\alpha>0 αTAα>0,则称 f f f为正定二次型,同时称矩阵 A \boldsymbol{A} A为正定矩阵。

    n n n维矩阵 A \boldsymbol{A} A是正定矩阵,则

    (1) A \boldsymbol{A} A是实对称矩阵;

    (2) A \boldsymbol{A} A正惯性指数为 n n n,所有特征值均为正;

    (3) A \boldsymbol{A} A与单位阵合同;

    (4) A \boldsymbol{A} A的各阶顺序主子式大于零;

    (5)存在可逆矩阵 P \boldsymbol{P} P使得 A = P T P \boldsymbol{A}=\boldsymbol{P}^T\boldsymbol{P} A=PTP

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值