1.问题背景:多个中心的“高斯分布”
前面我们讲过,在统计学领域,对于很多的样本我们可以用一个高斯分布去概况描述样本的分布,他非常通用,具体的例子我们就不再赘述。现在请大家看看下面这个样本的分布图:
很显然,如果我们试图用一个二元的高斯分布模型去描述图中这些样本点的分布,肯定是不合适的,单个高斯分布无法描述这个图中的样本分布。
2.高斯混合模型的引入
这里就需要引入高斯混合模型,顾名思义,这个模型有两个要点,一个是高斯,另一个是混合。
高斯:指的是底层的模型还是高斯分布。
混合:指的是我们利用多个高斯分布进行加权叠加,就是将多个不同的高斯分布的概率密度函数进行加权叠加,形成一个新概率密度函数表达式,他能够更有效的描述当前形式样本的分布。