【概率图与随机过程】10 探索高斯混合模型:EM迭代实践

本文介绍了高斯混合模型的概念,用于描述多个中心的分布情况。高斯混合模型通过组合多个高斯分布来逼近复杂的样本分布,每个高斯分布有其特定的权重。文章详细阐述了模型的生成过程,强调了隐含变量在模型中的作用,并讨论了参数估计的挑战,指出在无法直接求解极大似然估计时,可以采用EM算法进行迭代求解。
摘要由CSDN通过智能技术生成

1.问题背景:多个中心的“高斯分布”

前面我们讲过,在统计学领域,对于很多的样本我们可以用一个高斯分布去概况描述样本的分布,他非常通用,具体的例子我们就不再赘述。现在请大家看看下面这个样本的分布图:
图1 多个中心的高斯分布示意

很显然,如果我们试图用一个二元的高斯分布模型去描述图中这些样本点的分布,肯定是不合适的,单个高斯分布无法描述这个图中的样本分布。

2.高斯混合模型的引入

这里就需要引入高斯混合模型,顾名思义,这个模型有两个要点,一个是高斯,另一个是混合。

高斯:指的是底层的模型还是高斯分布。

混合:指的是我们利用多个高斯分布进行加权叠加,就是将多个不同的高斯分布的概率密度函数进行加权叠加,形成一个新概率密度函数表达式,他能够更有效的描述当前形式样本的分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石 溪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值